作为 GPT 语言建模的新药设计:采用监督和强化学习的大型化学模型

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Gavin Ye
{"title":"作为 GPT 语言建模的新药设计:采用监督和强化学习的大型化学模型","authors":"Gavin Ye","doi":"10.1007/s10822-024-00559-z","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, generative machine learning algorithms have been successful in designing innovative drug-like molecules. SMILES is a sequence-like language used in most effective drug design models. Due to data’s sequential structure, models such as recurrent neural networks and transformers can design pharmacological compounds with optimized efficacy. Large language models have advanced recently, but their implications on drug design have not yet been explored. Although one study successfully pre-trained a <i>large chemistry model</i> (LCM), its application to specific tasks in drug discovery is unknown. In this study, the drug design task is modeled as a causal language modeling problem. Thus, the procedure of reward modeling, supervised fine-tuning, and proximal policy optimization was used to transfer the LCM to drug design, similar to Open AI’s ChatGPT and InstructGPT procedures. By combining the SMILES sequence with chemical descriptors, the novel efficacy evaluation model exceeded its performance compared to previous studies. After proximal policy optimization, the drug design model generated molecules with 99.2% having efficacy pIC<sub>50</sub> &gt; 7 towards the amyloid precursor protein, with 100% of the generated molecules being valid and novel. This demonstrated the applicability of LCMs in drug discovery, with benefits including less data consumption while fine-tuning. The applicability of LCMs to drug discovery opens the door for larger studies involving reinforcement-learning with human feedback, where chemists provide feedback to LCMs and generate higher-quality molecules. LCMs’ ability to design similar molecules from datasets paves the way for more accessible, non-patented alternatives to drug molecules.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-024-00559-z.pdf","citationCount":"0","resultStr":"{\"title\":\"De novo drug design as GPT language modeling: large chemistry models with supervised and reinforcement learning\",\"authors\":\"Gavin Ye\",\"doi\":\"10.1007/s10822-024-00559-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, generative machine learning algorithms have been successful in designing innovative drug-like molecules. SMILES is a sequence-like language used in most effective drug design models. Due to data’s sequential structure, models such as recurrent neural networks and transformers can design pharmacological compounds with optimized efficacy. Large language models have advanced recently, but their implications on drug design have not yet been explored. Although one study successfully pre-trained a <i>large chemistry model</i> (LCM), its application to specific tasks in drug discovery is unknown. In this study, the drug design task is modeled as a causal language modeling problem. Thus, the procedure of reward modeling, supervised fine-tuning, and proximal policy optimization was used to transfer the LCM to drug design, similar to Open AI’s ChatGPT and InstructGPT procedures. By combining the SMILES sequence with chemical descriptors, the novel efficacy evaluation model exceeded its performance compared to previous studies. After proximal policy optimization, the drug design model generated molecules with 99.2% having efficacy pIC<sub>50</sub> &gt; 7 towards the amyloid precursor protein, with 100% of the generated molecules being valid and novel. This demonstrated the applicability of LCMs in drug discovery, with benefits including less data consumption while fine-tuning. The applicability of LCMs to drug discovery opens the door for larger studies involving reinforcement-learning with human feedback, where chemists provide feedback to LCMs and generate higher-quality molecules. LCMs’ ability to design similar molecules from datasets paves the way for more accessible, non-patented alternatives to drug molecules.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10822-024-00559-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-024-00559-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-024-00559-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,生成式机器学习算法已成功设计出创新的类药物分子。SMILES 是一种序列类语言,用于大多数有效的药物设计模型。由于数据的序列结构,递归神经网络和变换器等模型可以设计出药效最优的药物化合物。大型语言模型近来取得了进展,但它们对药物设计的影响尚未得到探讨。虽然有一项研究成功预训练了大型化学模型(LCM),但其在药物发现特定任务中的应用还不得而知。在本研究中,药物设计任务被建模为因果语言建模问题。因此,与 Open AI 的 ChatGPT 和 InstructGPT 程序类似,我们采用了奖励建模、监督微调和近似策略优化的程序,将 LCM 移植到药物设计中。通过将 SMILES 序列与化学描述符相结合,新型药效评估模型的性能超过了以往的研究。经过近端策略优化后,药物设计模型生成的分子对淀粉样前体蛋白的药效 pIC50 > 7 为 99.2%,生成的分子 100%有效且新颖。这证明了 LCM 在药物发现中的适用性,其优势包括在微调时消耗的数据更少。LCMs 在药物发现方面的适用性为更大规模的研究打开了大门,这些研究涉及带有人类反馈的强化学习,即化学家向 LCMs 提供反馈并生成更高质量的分子。LCMs 能够根据数据集设计类似的分子,这为开发更容易获得的非专利药物分子替代品铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

De novo drug design as GPT language modeling: large chemistry models with supervised and reinforcement learning

De novo drug design as GPT language modeling: large chemistry models with supervised and reinforcement learning

In recent years, generative machine learning algorithms have been successful in designing innovative drug-like molecules. SMILES is a sequence-like language used in most effective drug design models. Due to data’s sequential structure, models such as recurrent neural networks and transformers can design pharmacological compounds with optimized efficacy. Large language models have advanced recently, but their implications on drug design have not yet been explored. Although one study successfully pre-trained a large chemistry model (LCM), its application to specific tasks in drug discovery is unknown. In this study, the drug design task is modeled as a causal language modeling problem. Thus, the procedure of reward modeling, supervised fine-tuning, and proximal policy optimization was used to transfer the LCM to drug design, similar to Open AI’s ChatGPT and InstructGPT procedures. By combining the SMILES sequence with chemical descriptors, the novel efficacy evaluation model exceeded its performance compared to previous studies. After proximal policy optimization, the drug design model generated molecules with 99.2% having efficacy pIC50 > 7 towards the amyloid precursor protein, with 100% of the generated molecules being valid and novel. This demonstrated the applicability of LCMs in drug discovery, with benefits including less data consumption while fine-tuning. The applicability of LCMs to drug discovery opens the door for larger studies involving reinforcement-learning with human feedback, where chemists provide feedback to LCMs and generate higher-quality molecules. LCMs’ ability to design similar molecules from datasets paves the way for more accessible, non-patented alternatives to drug molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信