电沉积金微柱压缩应变率对微机电系统元件设计的影响

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shota Kanno , Taro Omura , Jhen-Yang Wu , Tomoyuki Kurioka , Chun-Yi Chen , Parthojit Chakraborty , Katsuyuki Machida , Hiroyuki Ito , Yoshihiro Miyake , Masato Sone , Tso-Fu Mark Chang
{"title":"电沉积金微柱压缩应变率对微机电系统元件设计的影响","authors":"Shota Kanno ,&nbsp;Taro Omura ,&nbsp;Jhen-Yang Wu ,&nbsp;Tomoyuki Kurioka ,&nbsp;Chun-Yi Chen ,&nbsp;Parthojit Chakraborty ,&nbsp;Katsuyuki Machida ,&nbsp;Hiroyuki Ito ,&nbsp;Yoshihiro Miyake ,&nbsp;Masato Sone ,&nbsp;Tso-Fu Mark Chang","doi":"10.1016/j.mne.2024.100254","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the strain rate dependence in yield strengths of electrodeposited gold micro-pillars is evaluated for the design of movable components in MEMS devices. The micro-pillars are fabricated from electrodeposited gold by focused ion beam system. The strain rate dependence is quantified by the strain rate sensitivity, and the strain rate sensitivity is calculated from the yield strength obtained from compression tests of the gold micro-pillars having different sizes at different strain rates. An increase in the yield strength following a reduction in the pillar size is observed, which is the sample size effect. Also, weakening of the yield strength is observed following a decrease in the strain rate, which is the strain rate dependence, and the strain rate sensitivity of the gold micro-pillars is found be at roughly 0.03.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100254"},"PeriodicalIF":2.8000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000170/pdfft?md5=2e1d5e856d9a5174587acc53b7d0f432&pid=1-s2.0-S2590007224000170-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of the strain rate in compression of electrodeposited gold micro-pillars toward the design of MEMS components\",\"authors\":\"Shota Kanno ,&nbsp;Taro Omura ,&nbsp;Jhen-Yang Wu ,&nbsp;Tomoyuki Kurioka ,&nbsp;Chun-Yi Chen ,&nbsp;Parthojit Chakraborty ,&nbsp;Katsuyuki Machida ,&nbsp;Hiroyuki Ito ,&nbsp;Yoshihiro Miyake ,&nbsp;Masato Sone ,&nbsp;Tso-Fu Mark Chang\",\"doi\":\"10.1016/j.mne.2024.100254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the strain rate dependence in yield strengths of electrodeposited gold micro-pillars is evaluated for the design of movable components in MEMS devices. The micro-pillars are fabricated from electrodeposited gold by focused ion beam system. The strain rate dependence is quantified by the strain rate sensitivity, and the strain rate sensitivity is calculated from the yield strength obtained from compression tests of the gold micro-pillars having different sizes at different strain rates. An increase in the yield strength following a reduction in the pillar size is observed, which is the sample size effect. Also, weakening of the yield strength is observed following a decrease in the strain rate, which is the strain rate dependence, and the strain rate sensitivity of the gold micro-pillars is found be at roughly 0.03.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"23 \",\"pages\":\"Article 100254\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000170/pdfft?md5=2e1d5e856d9a5174587acc53b7d0f432&pid=1-s2.0-S2590007224000170-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了电沉积金微柱屈服强度的应变率依赖性,以用于微机电系统设备中可移动部件的设计。微柱由电沉积金通过聚焦离子束系统制成。应变速率依赖性由应变速率灵敏度来量化,而应变速率灵敏度则是根据不同尺寸的金微柱在不同应变速率下进行压缩试验所获得的屈服强度计算得出的。可以观察到金微柱尺寸减小后屈服强度增加,这就是样品尺寸效应。此外,应变速率降低时,屈服强度也会减弱,这就是应变速率依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of the strain rate in compression of electrodeposited gold micro-pillars toward the design of MEMS components

Effects of the strain rate in compression of electrodeposited gold micro-pillars toward the design of MEMS components

In this study, the strain rate dependence in yield strengths of electrodeposited gold micro-pillars is evaluated for the design of movable components in MEMS devices. The micro-pillars are fabricated from electrodeposited gold by focused ion beam system. The strain rate dependence is quantified by the strain rate sensitivity, and the strain rate sensitivity is calculated from the yield strength obtained from compression tests of the gold micro-pillars having different sizes at different strain rates. An increase in the yield strength following a reduction in the pillar size is observed, which is the sample size effect. Also, weakening of the yield strength is observed following a decrease in the strain rate, which is the strain rate dependence, and the strain rate sensitivity of the gold micro-pillars is found be at roughly 0.03.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信