基于 PLL 泄漏电路和电容式 DAC 突触的阈下时域模拟尖峰神经元

IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Taylor Barton;Shea Smith;Yu Hao;Ryan Watson;Kyle Rogers;Parker Allred;Bibhu Datta Sahoo;Nancy Fulda;Jordan T. Yorgason;Karl F. Warnick;Mau-Chung Frank Chang;Yen-Cheng Kuan;Shiuh-Hua Wood Chiang
{"title":"基于 PLL 泄漏电路和电容式 DAC 突触的阈下时域模拟尖峰神经元","authors":"Taylor Barton;Shea Smith;Yu Hao;Ryan Watson;Kyle Rogers;Parker Allred;Bibhu Datta Sahoo;Nancy Fulda;Jordan T. Yorgason;Karl F. Warnick;Mau-Chung Frank Chang;Yen-Cheng Kuan;Shiuh-Hua Wood Chiang","doi":"10.1109/LSSC.2024.3384762","DOIUrl":null,"url":null,"abstract":"The design and measurement of a time-domain analog spiking neuron is described. The proposed neuron leverages time-domain processing using voltage-controlled oscillators (VCOs) and a time-domain comparator to integrate the input spike and trigger the output spike. A novel leaky circuit uses a phase-locked loop (PLL) to drive the phase difference between the two VCOs toward zero. A weighted capacitive digital-to-analog converter (CDAC) synapse merges the input spikes and phase-frequency detector (PFD) outputs to generate the VCO control voltage. The neuron is implemented in a 28-nm CMOS technology and operates under a subthreshold supply voltage of 0.35 V. Occupying \n<inline-formula> <tex-math>$154~\\mu {\\mathrm{ m}}^{2}$ </tex-math></inline-formula>\n, measurement shows a maximum spike rate of 5.5 MHz and energy consumption of 159 fJ/spike.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"143-146"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Subthreshold Time-Domain Analog Spiking Neuron With PLL-Based Leak Circuit and Capacitive DAC Synapse\",\"authors\":\"Taylor Barton;Shea Smith;Yu Hao;Ryan Watson;Kyle Rogers;Parker Allred;Bibhu Datta Sahoo;Nancy Fulda;Jordan T. Yorgason;Karl F. Warnick;Mau-Chung Frank Chang;Yen-Cheng Kuan;Shiuh-Hua Wood Chiang\",\"doi\":\"10.1109/LSSC.2024.3384762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design and measurement of a time-domain analog spiking neuron is described. The proposed neuron leverages time-domain processing using voltage-controlled oscillators (VCOs) and a time-domain comparator to integrate the input spike and trigger the output spike. A novel leaky circuit uses a phase-locked loop (PLL) to drive the phase difference between the two VCOs toward zero. A weighted capacitive digital-to-analog converter (CDAC) synapse merges the input spikes and phase-frequency detector (PFD) outputs to generate the VCO control voltage. The neuron is implemented in a 28-nm CMOS technology and operates under a subthreshold supply voltage of 0.35 V. Occupying \\n<inline-formula> <tex-math>$154~\\\\mu {\\\\mathrm{ m}}^{2}$ </tex-math></inline-formula>\\n, measurement shows a maximum spike rate of 5.5 MHz and energy consumption of 159 fJ/spike.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"7 \",\"pages\":\"143-146\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10492988/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10492988/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了时域模拟尖峰神经元的设计和测量。提议的神经元利用压控振荡器 (VCO) 和时域比较器进行时域处理,以整合输入尖峰并触发输出尖峰。新颖的泄漏电路使用锁相环 (PLL) 将两个 VCO 之间的相位差推向零。加权电容式数模转换器(CDAC)突触将输入尖峰和相频检测器(PFD)输出合并,以产生 VCO 控制电压。神经元采用 28 纳米 CMOS 技术实现,在 0.35 伏的亚阈值电压下工作。测量显示,该神经元占用 154~\mu {\mathrm{ m}}^{2}$,最大尖峰速率为 5.5 MHz,能耗为 159 fJ/尖峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Subthreshold Time-Domain Analog Spiking Neuron With PLL-Based Leak Circuit and Capacitive DAC Synapse
The design and measurement of a time-domain analog spiking neuron is described. The proposed neuron leverages time-domain processing using voltage-controlled oscillators (VCOs) and a time-domain comparator to integrate the input spike and trigger the output spike. A novel leaky circuit uses a phase-locked loop (PLL) to drive the phase difference between the two VCOs toward zero. A weighted capacitive digital-to-analog converter (CDAC) synapse merges the input spikes and phase-frequency detector (PFD) outputs to generate the VCO control voltage. The neuron is implemented in a 28-nm CMOS technology and operates under a subthreshold supply voltage of 0.35 V. Occupying $154~\mu {\mathrm{ m}}^{2}$ , measurement shows a maximum spike rate of 5.5 MHz and energy consumption of 159 fJ/spike.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信