{"title":"通过值函数逼近实现在线多接触后退地平线规划","authors":"Jiayi Wang;Sanghyun Kim;Teguh Santoso Lembono;Wenqian Du;Jaehyun Shim;Saeid Samadi;Ke Wang;Vladimir Ivan;Sylvain Calinon;Sethu Vijayakumar;Steve Tonneau","doi":"10.1109/TRO.2024.3392154","DOIUrl":null,"url":null,"abstract":"Planning multicontact motions in a receding horizon fashion requires a value function to guide the planning with respect to the future, e.g., building momentum to traverse large obstacles. Traditionally, the value function is approximated by computing trajectories in a prediction horizon (never executed) that foresees the future beyond the execution horizon. However, given the nonconvex dynamics of multicontact motions, this approach is computationally expensive. To enable online receding horizon planning (RHP) of multicontact motions, we find efficient approximations of the value function. Specifically, we propose a trajectory-based and a learning-based approach. In the former, namely RHP with multiple levels of model fidelity, we approximate the value function by computing the prediction horizon with a convex relaxed model. In the latter, namely locally guided RHP, we learn an oracle to predict local objectives for locomotion tasks, and we use these local objectives to construct local value functions for guiding a short-horizon RHP. We evaluate both approaches in simulation by planning centroidal trajectories of a humanoid robot walking on moderate slopes, and on large slopes where the robot cannot maintain static balance. Our results show that locally guided RHP achieves the best computation efficiency (95%–98.6% cycles converge online). This computation advantage enables us to demonstrate online RHP of our real-world humanoid robot Talos walking in dynamic environments that change on-the-fly.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"40 ","pages":"2791-2810"},"PeriodicalIF":10.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Multicontact Receding Horizon Planning via Value Function Approximation\",\"authors\":\"Jiayi Wang;Sanghyun Kim;Teguh Santoso Lembono;Wenqian Du;Jaehyun Shim;Saeid Samadi;Ke Wang;Vladimir Ivan;Sylvain Calinon;Sethu Vijayakumar;Steve Tonneau\",\"doi\":\"10.1109/TRO.2024.3392154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planning multicontact motions in a receding horizon fashion requires a value function to guide the planning with respect to the future, e.g., building momentum to traverse large obstacles. Traditionally, the value function is approximated by computing trajectories in a prediction horizon (never executed) that foresees the future beyond the execution horizon. However, given the nonconvex dynamics of multicontact motions, this approach is computationally expensive. To enable online receding horizon planning (RHP) of multicontact motions, we find efficient approximations of the value function. Specifically, we propose a trajectory-based and a learning-based approach. In the former, namely RHP with multiple levels of model fidelity, we approximate the value function by computing the prediction horizon with a convex relaxed model. In the latter, namely locally guided RHP, we learn an oracle to predict local objectives for locomotion tasks, and we use these local objectives to construct local value functions for guiding a short-horizon RHP. We evaluate both approaches in simulation by planning centroidal trajectories of a humanoid robot walking on moderate slopes, and on large slopes where the robot cannot maintain static balance. Our results show that locally guided RHP achieves the best computation efficiency (95%–98.6% cycles converge online). This computation advantage enables us to demonstrate online RHP of our real-world humanoid robot Talos walking in dynamic environments that change on-the-fly.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":\"40 \",\"pages\":\"2791-2810\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10506550/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10506550/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Online Multicontact Receding Horizon Planning via Value Function Approximation
Planning multicontact motions in a receding horizon fashion requires a value function to guide the planning with respect to the future, e.g., building momentum to traverse large obstacles. Traditionally, the value function is approximated by computing trajectories in a prediction horizon (never executed) that foresees the future beyond the execution horizon. However, given the nonconvex dynamics of multicontact motions, this approach is computationally expensive. To enable online receding horizon planning (RHP) of multicontact motions, we find efficient approximations of the value function. Specifically, we propose a trajectory-based and a learning-based approach. In the former, namely RHP with multiple levels of model fidelity, we approximate the value function by computing the prediction horizon with a convex relaxed model. In the latter, namely locally guided RHP, we learn an oracle to predict local objectives for locomotion tasks, and we use these local objectives to construct local value functions for guiding a short-horizon RHP. We evaluate both approaches in simulation by planning centroidal trajectories of a humanoid robot walking on moderate slopes, and on large slopes where the robot cannot maintain static balance. Our results show that locally guided RHP achieves the best computation efficiency (95%–98.6% cycles converge online). This computation advantage enables us to demonstrate online RHP of our real-world humanoid robot Talos walking in dynamic environments that change on-the-fly.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.