{"title":"在柔性衬底上开发基于共晶镓铟的透明导电电极,用于集成触摸传感器","authors":"Hongseok Kim , Youngjun Song , Sung-pil Chang","doi":"10.1016/j.microrel.2024.115402","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the adaptability of liquid metal (LM)-based transparent conductive electrodes (TCEs) to flexible substrates and their potential applications in various electronics fields were investigated. To achieve this, conventional microfabrication techniques were employed to pattern polydimethylsiloxane (PDMS) channels and introduce an Eutectic Gallium-Indium (EGaIn) LM with the aim of enhancing transmittance and reducing sheet resistance. Microfluidic channel structures with varying pitch lengths and widths were fabricated in the types of grid patterns, labeled Pattern A (2000 μm pitch, 40 μm width), Pattern B (2000 μm pitch, 80 μm width), Pattern C (200 μm pitch, 40 μm width), and Pattern D (200 μm pitch, 80 μm width. The corresponding average transmittance values for the EGaIn LM-based TCE were 90 %, 71.8 %, 61.8 %, and 43.2 % for Patterns A, B, C, and D, respectively. To illustrate the potential in touch sensor applications, resistance changes in Patterns A, B, C, and D were assessed under applied forces ranging from 0 N to 150 N, revealing resistance changes of 0.0265 Ω, 0.03617 Ω, 0.03977 Ω, and 0.11629 Ω, respectively.</p></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of eutectic gallium-indium-based transparent conductive electrodes on flexible substrates for touch sensor integration\",\"authors\":\"Hongseok Kim , Youngjun Song , Sung-pil Chang\",\"doi\":\"10.1016/j.microrel.2024.115402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the adaptability of liquid metal (LM)-based transparent conductive electrodes (TCEs) to flexible substrates and their potential applications in various electronics fields were investigated. To achieve this, conventional microfabrication techniques were employed to pattern polydimethylsiloxane (PDMS) channels and introduce an Eutectic Gallium-Indium (EGaIn) LM with the aim of enhancing transmittance and reducing sheet resistance. Microfluidic channel structures with varying pitch lengths and widths were fabricated in the types of grid patterns, labeled Pattern A (2000 μm pitch, 40 μm width), Pattern B (2000 μm pitch, 80 μm width), Pattern C (200 μm pitch, 40 μm width), and Pattern D (200 μm pitch, 80 μm width. The corresponding average transmittance values for the EGaIn LM-based TCE were 90 %, 71.8 %, 61.8 %, and 43.2 % for Patterns A, B, C, and D, respectively. To illustrate the potential in touch sensor applications, resistance changes in Patterns A, B, C, and D were assessed under applied forces ranging from 0 N to 150 N, revealing resistance changes of 0.0265 Ω, 0.03617 Ω, 0.03977 Ω, and 0.11629 Ω, respectively.</p></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026271424000829\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424000829","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Development of eutectic gallium-indium-based transparent conductive electrodes on flexible substrates for touch sensor integration
In this study, the adaptability of liquid metal (LM)-based transparent conductive electrodes (TCEs) to flexible substrates and their potential applications in various electronics fields were investigated. To achieve this, conventional microfabrication techniques were employed to pattern polydimethylsiloxane (PDMS) channels and introduce an Eutectic Gallium-Indium (EGaIn) LM with the aim of enhancing transmittance and reducing sheet resistance. Microfluidic channel structures with varying pitch lengths and widths were fabricated in the types of grid patterns, labeled Pattern A (2000 μm pitch, 40 μm width), Pattern B (2000 μm pitch, 80 μm width), Pattern C (200 μm pitch, 40 μm width), and Pattern D (200 μm pitch, 80 μm width. The corresponding average transmittance values for the EGaIn LM-based TCE were 90 %, 71.8 %, 61.8 %, and 43.2 % for Patterns A, B, C, and D, respectively. To illustrate the potential in touch sensor applications, resistance changes in Patterns A, B, C, and D were assessed under applied forces ranging from 0 N to 150 N, revealing resistance changes of 0.0265 Ω, 0.03617 Ω, 0.03977 Ω, and 0.11629 Ω, respectively.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.