Zhijie Chen , Gao-Feng Han , Asif Mahmood , Jingwei Hou , Wei Wei , Ho Kyong Shon , Guoxiu Wang , T. David Waite , Jong-Beom Baek , Bing-Jie Ni
{"title":"用于可持续能源和环境应用的机械合成电活性材料:重要综述","authors":"Zhijie Chen , Gao-Feng Han , Asif Mahmood , Jingwei Hou , Wei Wei , Ho Kyong Shon , Guoxiu Wang , T. David Waite , Jong-Beom Baek , Bing-Jie Ni","doi":"10.1016/j.pmatsci.2024.101299","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemistry-driven techniques for advanced energy storage/conversion and environmental protection play a crucial role in achieving sustainable development goals. As an indispensable component in diverse electrochemical systems, electroactive materials gain soaring interest in terms of rational design and sustainable synthesis. Notably, mechanochemistry-based green and powerful synthesis has been widely employed to fabricate diverse electroactive materials, given their scalability and tunability. Recently, mechanochemically synthesized electroactive materials have been widely applied in various environmental and energy fields, leading to significant progress. However, a systematic analysis of these advancements is still missing. Herein, we comprehensively discuss recent achievements in mechanosynthesized electroactive materials for sustainable energy and environmental applications. The development of mechanochemical synthesis is introduced, along with different types of mechanosynthesized electroactive materials. Subsequently, the review delves into the applications of these materials in advanced energy conversion/storage systems and environmental remediation. The rational design of electroactive materials and their structure-performance correlation are illustrated by discussing the effects of the mechanochemical process on the internal and external properties of materials and their electrochemical performance. Lastly, key perspectives in this field are discussed, including mechanochemical process monitoring, field-assisted mechanochemical synthesis, material performance optimization, practical applications, and mechanochemistry-driven fuels/chemicals synthesis. By illustrating current advances and perspectives related to the development of mechanosynthesized electroactive materials, this review aims to shed some light on upcoming research on green mechanochemical synthesis-driven energy and environmental sustainability.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"145 ","pages":"Article 101299"},"PeriodicalIF":33.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000689/pdfft?md5=212bbeeaa606190ea821a38e8103f7c4&pid=1-s2.0-S0079642524000689-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanosynthesized electroactive materials for sustainable energy and environmental applications: A critical review\",\"authors\":\"Zhijie Chen , Gao-Feng Han , Asif Mahmood , Jingwei Hou , Wei Wei , Ho Kyong Shon , Guoxiu Wang , T. David Waite , Jong-Beom Baek , Bing-Jie Ni\",\"doi\":\"10.1016/j.pmatsci.2024.101299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemistry-driven techniques for advanced energy storage/conversion and environmental protection play a crucial role in achieving sustainable development goals. As an indispensable component in diverse electrochemical systems, electroactive materials gain soaring interest in terms of rational design and sustainable synthesis. Notably, mechanochemistry-based green and powerful synthesis has been widely employed to fabricate diverse electroactive materials, given their scalability and tunability. Recently, mechanochemically synthesized electroactive materials have been widely applied in various environmental and energy fields, leading to significant progress. However, a systematic analysis of these advancements is still missing. Herein, we comprehensively discuss recent achievements in mechanosynthesized electroactive materials for sustainable energy and environmental applications. The development of mechanochemical synthesis is introduced, along with different types of mechanosynthesized electroactive materials. Subsequently, the review delves into the applications of these materials in advanced energy conversion/storage systems and environmental remediation. The rational design of electroactive materials and their structure-performance correlation are illustrated by discussing the effects of the mechanochemical process on the internal and external properties of materials and their electrochemical performance. Lastly, key perspectives in this field are discussed, including mechanochemical process monitoring, field-assisted mechanochemical synthesis, material performance optimization, practical applications, and mechanochemistry-driven fuels/chemicals synthesis. By illustrating current advances and perspectives related to the development of mechanosynthesized electroactive materials, this review aims to shed some light on upcoming research on green mechanochemical synthesis-driven energy and environmental sustainability.</p></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"145 \",\"pages\":\"Article 101299\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079642524000689/pdfft?md5=212bbeeaa606190ea821a38e8103f7c4&pid=1-s2.0-S0079642524000689-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524000689\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000689","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanosynthesized electroactive materials for sustainable energy and environmental applications: A critical review
Electrochemistry-driven techniques for advanced energy storage/conversion and environmental protection play a crucial role in achieving sustainable development goals. As an indispensable component in diverse electrochemical systems, electroactive materials gain soaring interest in terms of rational design and sustainable synthesis. Notably, mechanochemistry-based green and powerful synthesis has been widely employed to fabricate diverse electroactive materials, given their scalability and tunability. Recently, mechanochemically synthesized electroactive materials have been widely applied in various environmental and energy fields, leading to significant progress. However, a systematic analysis of these advancements is still missing. Herein, we comprehensively discuss recent achievements in mechanosynthesized electroactive materials for sustainable energy and environmental applications. The development of mechanochemical synthesis is introduced, along with different types of mechanosynthesized electroactive materials. Subsequently, the review delves into the applications of these materials in advanced energy conversion/storage systems and environmental remediation. The rational design of electroactive materials and their structure-performance correlation are illustrated by discussing the effects of the mechanochemical process on the internal and external properties of materials and their electrochemical performance. Lastly, key perspectives in this field are discussed, including mechanochemical process monitoring, field-assisted mechanochemical synthesis, material performance optimization, practical applications, and mechanochemistry-driven fuels/chemicals synthesis. By illustrating current advances and perspectives related to the development of mechanosynthesized electroactive materials, this review aims to shed some light on upcoming research on green mechanochemical synthesis-driven energy and environmental sustainability.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.