增强航空公司收益管理可用性控制对预测误差的稳健性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tiago Gonçalves, Bernardo Almada-Lobo
{"title":"增强航空公司收益管理可用性控制对预测误差的稳健性","authors":"Tiago Gonçalves, Bernardo Almada-Lobo","doi":"10.1057/s41272-024-00475-9","DOIUrl":null,"url":null,"abstract":"<p>Traditional revenue management systems are built under the assumption of independent demand per fare. The fare adjustment theory is a methodology to adjust fares that allows for the continued use of optimization algorithms and seat inventory control methods, even with the shift toward dependent demand. Since accurate demand forecasts are a key input to this methodology, it is reasonable to assume that for a scenario with uncertainties it may deliver suboptimal performance. Particularly, during and after COVID-19, airlines faced striking challenges in demand forecasting. This study demonstrates, firstly, the theoretical dominance of the fare adjustment theory under perfect conditions. Secondly, it lacks robustness to forecast errors. A Monte Carlo simulation replicating a revenue management system under mild assumptions indicates that a forecast error of <span>\\(\\pm 20\\%\\)</span> can potentially prompt a necessity to adjust the margin employed in the fare adjustment theory by <span>\\(-10\\%\\)</span>. Moreover, a tree-based machine learning model highlights the forecast error as the predominant factor, with bias playing an even more pivotal role than variance. An out-of-sample study indicates that the predictive model steadily outperforms the fare adjustment theory.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing robustness to forecast errors in availability control for airline revenue management\",\"authors\":\"Tiago Gonçalves, Bernardo Almada-Lobo\",\"doi\":\"10.1057/s41272-024-00475-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional revenue management systems are built under the assumption of independent demand per fare. The fare adjustment theory is a methodology to adjust fares that allows for the continued use of optimization algorithms and seat inventory control methods, even with the shift toward dependent demand. Since accurate demand forecasts are a key input to this methodology, it is reasonable to assume that for a scenario with uncertainties it may deliver suboptimal performance. Particularly, during and after COVID-19, airlines faced striking challenges in demand forecasting. This study demonstrates, firstly, the theoretical dominance of the fare adjustment theory under perfect conditions. Secondly, it lacks robustness to forecast errors. A Monte Carlo simulation replicating a revenue management system under mild assumptions indicates that a forecast error of <span>\\\\(\\\\pm 20\\\\%\\\\)</span> can potentially prompt a necessity to adjust the margin employed in the fare adjustment theory by <span>\\\\(-10\\\\%\\\\)</span>. Moreover, a tree-based machine learning model highlights the forecast error as the predominant factor, with bias playing an even more pivotal role than variance. An out-of-sample study indicates that the predictive model steadily outperforms the fare adjustment theory.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1057/s41272-024-00475-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1057/s41272-024-00475-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的收益管理系统是在每一票价需求独立的假设下建立的。票价调整理论是一种调整票价的方法,它允许继续使用优化算法和座位库存控制方法,即使转向依赖需求。由于准确的需求预测是这一方法的关键输入,因此可以合理地假设,在存在不确定性的情况下,该方法可能会产生次优性能。特别是在 COVID-19 期间和之后,航空公司在需求预测方面面临着巨大的挑战。这项研究首先证明了票价调整理论在完美条件下的理论优势。其次,它缺乏对预测误差的稳健性。在温和的假设条件下复制收益管理系统的蒙特卡罗模拟表明,预测误差为(\pm 20%\)可能会促使票价调整理论所采用的利润率必须调整(-10\%\)。此外,基于树状结构的机器学习模型强调预测误差是主要因素,而偏差的作用甚至比方差更关键。一项样本外研究表明,预测模型稳定地优于票价调整理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing robustness to forecast errors in availability control for airline revenue management

Enhancing robustness to forecast errors in availability control for airline revenue management

Traditional revenue management systems are built under the assumption of independent demand per fare. The fare adjustment theory is a methodology to adjust fares that allows for the continued use of optimization algorithms and seat inventory control methods, even with the shift toward dependent demand. Since accurate demand forecasts are a key input to this methodology, it is reasonable to assume that for a scenario with uncertainties it may deliver suboptimal performance. Particularly, during and after COVID-19, airlines faced striking challenges in demand forecasting. This study demonstrates, firstly, the theoretical dominance of the fare adjustment theory under perfect conditions. Secondly, it lacks robustness to forecast errors. A Monte Carlo simulation replicating a revenue management system under mild assumptions indicates that a forecast error of \(\pm 20\%\) can potentially prompt a necessity to adjust the margin employed in the fare adjustment theory by \(-10\%\). Moreover, a tree-based machine learning model highlights the forecast error as the predominant factor, with bias playing an even more pivotal role than variance. An out-of-sample study indicates that the predictive model steadily outperforms the fare adjustment theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信