{"title":"利用时频斯温变换器识别船舶辐射噪声的运动状态","authors":"Fan Wu;Haiyang Yao;Haiyan Wang","doi":"10.1109/JOE.2024.3369663","DOIUrl":null,"url":null,"abstract":"Ship-radiated noise recognition is an essential but complex task in the construction of marine information systems and marine scientific research. Ambient noise, unstable frequency shifts, and irregular multipath interference make it complicated to recognize ship-radiated noise accurately. Existing recognition methods exhibit constrained proficiency in the identification of the motion states of ships, thus leading to disappointing application performance. To effectively recognize the ship movement with less computation, this work proposes the time-frequency Swin-Transformer (TFST) network. A hierarchical self-attention module is presented to extract multilayer time-frequency features so that the TFST network could learn moving targets' features in TF representations of the noise radiated by moving targets. A scale-difference simplified architecture is designed to reduce network complexity. Experiments reveal that the TFST network outperforms the state-of-the-art convolutional neural networks (CNNs) and Transformers on two underwater acoustic data sets. Moreover, the TFST network achieves at least 1.3 times improvement compared to five state-of-the-art methods on both average accuracy (OA) and kappa coefficient in three motion status recognition experiments.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"49 3","pages":"667-678"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognizing the State of Motion by Ship-Radiated Noise Using Time-Frequency Swin-Transformer\",\"authors\":\"Fan Wu;Haiyang Yao;Haiyan Wang\",\"doi\":\"10.1109/JOE.2024.3369663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ship-radiated noise recognition is an essential but complex task in the construction of marine information systems and marine scientific research. Ambient noise, unstable frequency shifts, and irregular multipath interference make it complicated to recognize ship-radiated noise accurately. Existing recognition methods exhibit constrained proficiency in the identification of the motion states of ships, thus leading to disappointing application performance. To effectively recognize the ship movement with less computation, this work proposes the time-frequency Swin-Transformer (TFST) network. A hierarchical self-attention module is presented to extract multilayer time-frequency features so that the TFST network could learn moving targets' features in TF representations of the noise radiated by moving targets. A scale-difference simplified architecture is designed to reduce network complexity. Experiments reveal that the TFST network outperforms the state-of-the-art convolutional neural networks (CNNs) and Transformers on two underwater acoustic data sets. Moreover, the TFST network achieves at least 1.3 times improvement compared to five state-of-the-art methods on both average accuracy (OA) and kappa coefficient in three motion status recognition experiments.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"49 3\",\"pages\":\"667-678\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10495053/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10495053/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Recognizing the State of Motion by Ship-Radiated Noise Using Time-Frequency Swin-Transformer
Ship-radiated noise recognition is an essential but complex task in the construction of marine information systems and marine scientific research. Ambient noise, unstable frequency shifts, and irregular multipath interference make it complicated to recognize ship-radiated noise accurately. Existing recognition methods exhibit constrained proficiency in the identification of the motion states of ships, thus leading to disappointing application performance. To effectively recognize the ship movement with less computation, this work proposes the time-frequency Swin-Transformer (TFST) network. A hierarchical self-attention module is presented to extract multilayer time-frequency features so that the TFST network could learn moving targets' features in TF representations of the noise radiated by moving targets. A scale-difference simplified architecture is designed to reduce network complexity. Experiments reveal that the TFST network outperforms the state-of-the-art convolutional neural networks (CNNs) and Transformers on two underwater acoustic data sets. Moreover, the TFST network achieves at least 1.3 times improvement compared to five state-of-the-art methods on both average accuracy (OA) and kappa coefficient in three motion status recognition experiments.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.