Ara2:利用符合 RVV 1.0 标准的高效开源处理器探索单核和多核矢量处理技术

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Matteo Perotti;Matheus Cavalcante;Renzo Andri;Lukas Cavigelli;Luca Benini
{"title":"Ara2:利用符合 RVV 1.0 标准的高效开源处理器探索单核和多核矢量处理技术","authors":"Matteo Perotti;Matheus Cavalcante;Renzo Andri;Lukas Cavigelli;Luca Benini","doi":"10.1109/TC.2024.3388896","DOIUrl":null,"url":null,"abstract":"Vector processing is highly effective in boosting processor performance and efficiency for data-parallel workloads. In this paper, we present Ara2, the first fully open-source vector processor to support the RISC-V V 1.0 frozen ISA. We evaluate Ara2's performance on a diverse set of data-parallel kernels for various problem sizes and vector-unit configurations, achieving an average functional-unit utilization of 95% on the most computationally intensive kernels. We pinpoint performance boosters and bottlenecks, including the scalar core, memories, and vector architecture, providing insights into the main vector architecture's performance drivers. Leveraging the openness of the design, we implement Ara2 in a 22nm technology, characterize its PPA metrics on various configurations (2-16 lanes), and analyze its microarchitecture and implementation bottlenecks. Ara2 achieves a state-of-the-art energy efficiency of 37.8 DP-GFLOPS/W (0.8V) and 1.35GHz of clock frequency (critical path: \n<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>\n40 FO4 gates). Finally, we explore the performance and energy-efficiency trade-offs of multi-core vector processors: we find that multiple vector cores help overcome the scalar core issue-rate bound that limits short-vector performance. For example, a cluster of eight 2-lane Ara2 (16 FPUs) achieves more than 3x better performance than a 16-lane single-core Ara2 (16 FPUs) when executing a 32x32x32 matrix multiplication, with 1.5x improved energy efficiency.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 7","pages":"1822-1836"},"PeriodicalIF":3.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ara2: Exploring Single- and Multi-Core Vector Processing With an Efficient RVV 1.0 Compliant Open-Source Processor\",\"authors\":\"Matteo Perotti;Matheus Cavalcante;Renzo Andri;Lukas Cavigelli;Luca Benini\",\"doi\":\"10.1109/TC.2024.3388896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector processing is highly effective in boosting processor performance and efficiency for data-parallel workloads. In this paper, we present Ara2, the first fully open-source vector processor to support the RISC-V V 1.0 frozen ISA. We evaluate Ara2's performance on a diverse set of data-parallel kernels for various problem sizes and vector-unit configurations, achieving an average functional-unit utilization of 95% on the most computationally intensive kernels. We pinpoint performance boosters and bottlenecks, including the scalar core, memories, and vector architecture, providing insights into the main vector architecture's performance drivers. Leveraging the openness of the design, we implement Ara2 in a 22nm technology, characterize its PPA metrics on various configurations (2-16 lanes), and analyze its microarchitecture and implementation bottlenecks. Ara2 achieves a state-of-the-art energy efficiency of 37.8 DP-GFLOPS/W (0.8V) and 1.35GHz of clock frequency (critical path: \\n<inline-formula><tex-math>$\\\\sim$</tex-math></inline-formula>\\n40 FO4 gates). Finally, we explore the performance and energy-efficiency trade-offs of multi-core vector processors: we find that multiple vector cores help overcome the scalar core issue-rate bound that limits short-vector performance. For example, a cluster of eight 2-lane Ara2 (16 FPUs) achieves more than 3x better performance than a 16-lane single-core Ara2 (16 FPUs) when executing a 32x32x32 matrix multiplication, with 1.5x improved energy efficiency.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"73 7\",\"pages\":\"1822-1836\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10500752/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10500752/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

矢量处理在提高处理器性能和数据并行工作负载的效率方面非常有效。在本文中,我们介绍了 Ara2,这是第一款支持 RISC-V V 1.0 frozen ISA 的完全开源矢量处理器。我们评估了 Ara2 在一组数据并行内核上的性能,针对不同的问题规模和矢量单元配置,在计算最密集的内核上实现了 95% 的平均功能单元利用率。我们精确定位了性能提升和瓶颈,包括标量内核、存储器和矢量架构,从而深入了解了主要矢量架构的性能驱动因素。利用设计的开放性,我们在 22 纳米技术中实现了 Ara2,鉴定了其在各种配置(2-16 通道)上的 PPA 指标,并分析了其微架构和实现瓶颈。Ara2 实现了 37.8 DP-GFLOPS/W (0.8V) 的一流能效和 1.35GHz 的时钟频率(关键路径:$\sim$40 FO4 门)。最后,我们探讨了多核矢量处理器的性能和能效权衡:我们发现,多矢量内核有助于克服限制短矢量性能的标量内核问题速率约束。例如,在执行 32x32x32 矩阵乘法运算时,8 个 2 通道 Ara2(16 个 FPU)集群的性能比 16 通道单核 Ara2(16 个 FPU)高 3 倍以上,能效提高 1.5 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ara2: Exploring Single- and Multi-Core Vector Processing With an Efficient RVV 1.0 Compliant Open-Source Processor
Vector processing is highly effective in boosting processor performance and efficiency for data-parallel workloads. In this paper, we present Ara2, the first fully open-source vector processor to support the RISC-V V 1.0 frozen ISA. We evaluate Ara2's performance on a diverse set of data-parallel kernels for various problem sizes and vector-unit configurations, achieving an average functional-unit utilization of 95% on the most computationally intensive kernels. We pinpoint performance boosters and bottlenecks, including the scalar core, memories, and vector architecture, providing insights into the main vector architecture's performance drivers. Leveraging the openness of the design, we implement Ara2 in a 22nm technology, characterize its PPA metrics on various configurations (2-16 lanes), and analyze its microarchitecture and implementation bottlenecks. Ara2 achieves a state-of-the-art energy efficiency of 37.8 DP-GFLOPS/W (0.8V) and 1.35GHz of clock frequency (critical path: $\sim$ 40 FO4 gates). Finally, we explore the performance and energy-efficiency trade-offs of multi-core vector processors: we find that multiple vector cores help overcome the scalar core issue-rate bound that limits short-vector performance. For example, a cluster of eight 2-lane Ara2 (16 FPUs) achieves more than 3x better performance than a 16-lane single-core Ara2 (16 FPUs) when executing a 32x32x32 matrix multiplication, with 1.5x improved energy efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信