部分相似条件下数据驱动的 Cz-Si 规模扩展

IF 1.5 4区 材料科学 Q3 Chemistry
Natasha Dropka, Klaus Böttcher, Gagan Kumar Chappa, Martin Holena
{"title":"部分相似条件下数据驱动的 Cz-Si 规模扩展","authors":"Natasha Dropka,&nbsp;Klaus Böttcher,&nbsp;Gagan Kumar Chappa,&nbsp;Martin Holena","doi":"10.1002/crat.202300342","DOIUrl":null,"url":null,"abstract":"<p>In Cz–Si growth, the shape of the solid–liquid interface and the <i>v</i>/<i>G</i> ratio significantly impact crystal quality. This study utilizes a data-driven approach, employing multilayer perceptron (MLP) neural networks and Bayesian optimization, to investigate the scale-up process of Cz–Si under conditions of partial similarity. The focus is on exploring the influence of various process and furnace geometry parameters, as well as radiation shield material properties, on the critical measures of crystal quality. Axisymmetric CFD modeling produces 340 sets of 18D raw data, from which 14-dimensionless derived data tuples are generated for the design and training of the MLP. The best MLP obtained demonstrates the ability to accurately assess the complex nonlinear dependencies among dimensionless numbers derived from CFD data and, on the output side, interface deflection and <i>v</i>/<i>G</i>. These relationships, crucial for scale-up, are successfully generalized across a wide range of parameters.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202300342","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Cz–Si Scale-Up under Conditions of Partial Similarity\",\"authors\":\"Natasha Dropka,&nbsp;Klaus Böttcher,&nbsp;Gagan Kumar Chappa,&nbsp;Martin Holena\",\"doi\":\"10.1002/crat.202300342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Cz–Si growth, the shape of the solid–liquid interface and the <i>v</i>/<i>G</i> ratio significantly impact crystal quality. This study utilizes a data-driven approach, employing multilayer perceptron (MLP) neural networks and Bayesian optimization, to investigate the scale-up process of Cz–Si under conditions of partial similarity. The focus is on exploring the influence of various process and furnace geometry parameters, as well as radiation shield material properties, on the critical measures of crystal quality. Axisymmetric CFD modeling produces 340 sets of 18D raw data, from which 14-dimensionless derived data tuples are generated for the design and training of the MLP. The best MLP obtained demonstrates the ability to accurately assess the complex nonlinear dependencies among dimensionless numbers derived from CFD data and, on the output side, interface deflection and <i>v</i>/<i>G</i>. These relationships, crucial for scale-up, are successfully generalized across a wide range of parameters.</p>\",\"PeriodicalId\":48935,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"59 6\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202300342\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300342\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300342","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

在晶硅生长过程中,固液界面的形状和 v/G 比对晶体质量有重大影响。本研究采用数据驱动法,利用多层感知器(MLP)神经网络和贝叶斯优化法,研究部分相似条件下的氮化硅放大过程。重点是探索各种工艺和熔炉几何参数以及辐射屏蔽材料特性对晶体质量关键指标的影响。轴对称 CFD 建模产生了 340 组 18D 原始数据,从中生成了 14 个无维度衍生数据元组,用于 MLP 的设计和训练。所获得的最佳 MLP 能够准确评估从 CFD 数据导出的无量纲数之间复杂的非线性依赖关系,以及输出端界面偏转和 v/G。这些关系对于扩大规模至关重要,并成功地在广泛的参数范围内得到了推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-Driven Cz–Si Scale-Up under Conditions of Partial Similarity

Data-Driven Cz–Si Scale-Up under Conditions of Partial Similarity

Data-Driven Cz–Si Scale-Up under Conditions of Partial Similarity

In Cz–Si growth, the shape of the solid–liquid interface and the v/G ratio significantly impact crystal quality. This study utilizes a data-driven approach, employing multilayer perceptron (MLP) neural networks and Bayesian optimization, to investigate the scale-up process of Cz–Si under conditions of partial similarity. The focus is on exploring the influence of various process and furnace geometry parameters, as well as radiation shield material properties, on the critical measures of crystal quality. Axisymmetric CFD modeling produces 340 sets of 18D raw data, from which 14-dimensionless derived data tuples are generated for the design and training of the MLP. The best MLP obtained demonstrates the ability to accurately assess the complex nonlinear dependencies among dimensionless numbers derived from CFD data and, on the output side, interface deflection and v/G. These relationships, crucial for scale-up, are successfully generalized across a wide range of parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信