Thamanna Begum Karimullah, Shobana Priyanka D, Srinivasan M, Punithavelan N
{"title":"半 Heusler 合金 ZrMnX(X = As、Sb、Te)的结构、机械、电子、磁性和热电特性研究:基于 DFT 的模拟","authors":"Thamanna Begum Karimullah, Shobana Priyanka D, Srinivasan M, Punithavelan N","doi":"10.1002/crat.202300166","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the structural, mechanical, electronic, magnetic, and thermoelectric properties of ZrMnX (X = As, Sb, Te) half Heusler alloys using spin-polarized density functional theory (SPDFT) with WIEN2K code using full potential linearized augmented plane wave(FP- LAPW) technique. Results indicate the ferromagnetic phase’s stability over the non-magnetic phase in all three alloys. Band structures and density of states highlight the half-metallic nature of ZrMnX. These alloys exhibit mechanical stability, ductility, and directional properties. Magnetic moments align with the Slater–Pauling rule. Thermoelectric properties, including Seebeck coefficient, electrical and thermal conductivity, and thermoelectric figure of merit, are evaluated using semi-classical Boltzmann theory. The Seebeck coefficient values for ZrMnX (X = As, Sb, Te) are 144.7, 123.3, and −182.6 µV K<sup>−1</sup>, respectively at 1200 K with corresponding highest figure of merit 1.0, 0.7, and 1.78. These findings suggest the suitability of these alloys for spintronic devices and high-temperature thermoelectric applications due to their observed spin-polarized character and high figure of merit.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Structural, Mechanical, Electronic, Magnetic, and Thermoelectric Properties of Half Heusler Alloys ZrMnX (X = As, Sb, Te): A DFT-Based Simulation\",\"authors\":\"Thamanna Begum Karimullah, Shobana Priyanka D, Srinivasan M, Punithavelan N\",\"doi\":\"10.1002/crat.202300166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the structural, mechanical, electronic, magnetic, and thermoelectric properties of ZrMnX (X = As, Sb, Te) half Heusler alloys using spin-polarized density functional theory (SPDFT) with WIEN2K code using full potential linearized augmented plane wave(FP- LAPW) technique. Results indicate the ferromagnetic phase’s stability over the non-magnetic phase in all three alloys. Band structures and density of states highlight the half-metallic nature of ZrMnX. These alloys exhibit mechanical stability, ductility, and directional properties. Magnetic moments align with the Slater–Pauling rule. Thermoelectric properties, including Seebeck coefficient, electrical and thermal conductivity, and thermoelectric figure of merit, are evaluated using semi-classical Boltzmann theory. The Seebeck coefficient values for ZrMnX (X = As, Sb, Te) are 144.7, 123.3, and −182.6 µV K<sup>−1</sup>, respectively at 1200 K with corresponding highest figure of merit 1.0, 0.7, and 1.78. These findings suggest the suitability of these alloys for spintronic devices and high-temperature thermoelectric applications due to their observed spin-polarized character and high figure of merit.</p>\",\"PeriodicalId\":48935,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"59 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300166\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300166","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Investigation of the Structural, Mechanical, Electronic, Magnetic, and Thermoelectric Properties of Half Heusler Alloys ZrMnX (X = As, Sb, Te): A DFT-Based Simulation
This study investigates the structural, mechanical, electronic, magnetic, and thermoelectric properties of ZrMnX (X = As, Sb, Te) half Heusler alloys using spin-polarized density functional theory (SPDFT) with WIEN2K code using full potential linearized augmented plane wave(FP- LAPW) technique. Results indicate the ferromagnetic phase’s stability over the non-magnetic phase in all three alloys. Band structures and density of states highlight the half-metallic nature of ZrMnX. These alloys exhibit mechanical stability, ductility, and directional properties. Magnetic moments align with the Slater–Pauling rule. Thermoelectric properties, including Seebeck coefficient, electrical and thermal conductivity, and thermoelectric figure of merit, are evaluated using semi-classical Boltzmann theory. The Seebeck coefficient values for ZrMnX (X = As, Sb, Te) are 144.7, 123.3, and −182.6 µV K−1, respectively at 1200 K with corresponding highest figure of merit 1.0, 0.7, and 1.78. These findings suggest the suitability of these alloys for spintronic devices and high-temperature thermoelectric applications due to their observed spin-polarized character and high figure of merit.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing