Nicolas Scalzitti, Iliya Miralavy, David E. Korenchan, Christian T. Farrar, Assaf A. Gilad, Wolfgang Banzhaf
{"title":"利用遗传编程方法计算肽的发现","authors":"Nicolas Scalzitti, Iliya Miralavy, David E. Korenchan, Christian T. Farrar, Assaf A. Gilad, Wolfgang Banzhaf","doi":"10.1007/s10822-024-00558-0","DOIUrl":null,"url":null,"abstract":"<div><p>The development of peptides for therapeutic targets or biomarkers for disease diagnosis is a challenging task in protein engineering. Current approaches are tedious, often time-consuming and require complex laboratory data due to the vast search spaces that need to be considered. <i>In silico</i> methods can accelerate research and substantially reduce costs. Evolutionary algorithms are a promising approach for exploring large search spaces and can facilitate the discovery of new peptides. This study presents the development and use of a new variant of the genetic-programming-based POET algorithm, called POET<sub><i>Regex</i></sub>, where individuals are represented by a list of regular expressions. This algorithm was trained on a small curated dataset and employed to generate new peptides improving the sensitivity of peptides in magnetic resonance imaging with chemical exchange saturation transfer (CEST). The resulting model achieves a performance gain of 20% over the initial POET models and is able to predict a candidate peptide with a 58% performance increase compared to the gold-standard peptide. By combining the power of genetic programming with the flexibility of regular expressions, new peptide targets were identified that improve the sensitivity of detection by CEST. This approach provides a promising research direction for the efficient identification of peptides with therapeutic or diagnostic potential.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-024-00558-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Computational peptide discovery with a genetic programming approach\",\"authors\":\"Nicolas Scalzitti, Iliya Miralavy, David E. Korenchan, Christian T. Farrar, Assaf A. Gilad, Wolfgang Banzhaf\",\"doi\":\"10.1007/s10822-024-00558-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of peptides for therapeutic targets or biomarkers for disease diagnosis is a challenging task in protein engineering. Current approaches are tedious, often time-consuming and require complex laboratory data due to the vast search spaces that need to be considered. <i>In silico</i> methods can accelerate research and substantially reduce costs. Evolutionary algorithms are a promising approach for exploring large search spaces and can facilitate the discovery of new peptides. This study presents the development and use of a new variant of the genetic-programming-based POET algorithm, called POET<sub><i>Regex</i></sub>, where individuals are represented by a list of regular expressions. This algorithm was trained on a small curated dataset and employed to generate new peptides improving the sensitivity of peptides in magnetic resonance imaging with chemical exchange saturation transfer (CEST). The resulting model achieves a performance gain of 20% over the initial POET models and is able to predict a candidate peptide with a 58% performance increase compared to the gold-standard peptide. By combining the power of genetic programming with the flexibility of regular expressions, new peptide targets were identified that improve the sensitivity of detection by CEST. This approach provides a promising research direction for the efficient identification of peptides with therapeutic or diagnostic potential.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10822-024-00558-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-024-00558-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-024-00558-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
开发用于治疗靶点或疾病诊断的生物标志物的多肽是蛋白质工程中一项具有挑战性的任务。由于需要考虑巨大的搜索空间,目前的方法繁琐、耗时且需要复杂的实验室数据。硅学方法可以加快研究速度并大幅降低成本。进化算法是一种探索大型搜索空间的有前途的方法,可促进新肽的发现。本研究介绍了基于遗传编程的 POET 算法的新变体 POET(_{Regex}\)的开发和使用,其中个体由正则表达式列表表示。该算法是在一个小型策划数据集上训练的,并用于生成新的肽,以提高肽在化学交换饱和转移(CEST)磁共振成像中的灵敏度。与最初的 POET 模型相比,生成的模型性能提高了 20%,与黄金标准肽相比,预测候选肽的性能提高了 58%。通过将遗传编程的强大功能与正则表达式的灵活性相结合,确定了新的多肽靶标,提高了 CEST 检测的灵敏度。这种方法为高效鉴定具有治疗或诊断潜力的多肽提供了一个前景广阔的研究方向。
Computational peptide discovery with a genetic programming approach
The development of peptides for therapeutic targets or biomarkers for disease diagnosis is a challenging task in protein engineering. Current approaches are tedious, often time-consuming and require complex laboratory data due to the vast search spaces that need to be considered. In silico methods can accelerate research and substantially reduce costs. Evolutionary algorithms are a promising approach for exploring large search spaces and can facilitate the discovery of new peptides. This study presents the development and use of a new variant of the genetic-programming-based POET algorithm, called POETRegex, where individuals are represented by a list of regular expressions. This algorithm was trained on a small curated dataset and employed to generate new peptides improving the sensitivity of peptides in magnetic resonance imaging with chemical exchange saturation transfer (CEST). The resulting model achieves a performance gain of 20% over the initial POET models and is able to predict a candidate peptide with a 58% performance increase compared to the gold-standard peptide. By combining the power of genetic programming with the flexibility of regular expressions, new peptide targets were identified that improve the sensitivity of detection by CEST. This approach provides a promising research direction for the efficient identification of peptides with therapeutic or diagnostic potential.