电阻记忆横梁的大马士革与减法线 CMP 工艺 BEOL 集成

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Raphaël Dawant , Matthieu Gaudreau , Marc-Antoine Roy , Pierre-Antoine Mouny , Matthieu Valdenaire , Pierre Gliech , Javier Arias Zapata , Malek Zegaoui , Fabien Alibart , Dominique Drouin , Serge Ecoffey
{"title":"电阻记忆横梁的大马士革与减法线 CMP 工艺 BEOL 集成","authors":"Raphaël Dawant ,&nbsp;Matthieu Gaudreau ,&nbsp;Marc-Antoine Roy ,&nbsp;Pierre-Antoine Mouny ,&nbsp;Matthieu Valdenaire ,&nbsp;Pierre Gliech ,&nbsp;Javier Arias Zapata ,&nbsp;Malek Zegaoui ,&nbsp;Fabien Alibart ,&nbsp;Dominique Drouin ,&nbsp;Serge Ecoffey","doi":"10.1016/j.mne.2024.100251","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, resistive memories have emerged as a pivotal advancement in the realm of electronics, offering numerous advantages in terms of energy efficiency, scalability, and non-volatility [1]. Characterized by their unique resistive switching behavior, these memories are well-suited for a variety of applications, ranging from high-density data storage to neuromorphic computing [2]. Their potential is further enhanced by their compatibility with advanced semiconductor processes, enabling seamless integration into modern electronic circuits [3]. A particularly promising avenue for resistive memory lies in its integration at the Back-End-of-Line (BEOL) stage of semiconductor manufacturing [4]. BEOL integration involves processes that occur after the fabrication of the transistors, primarily focusing on creating interconnections that electrically link these transistors. Integrating resistive memories at this stage can lead to compact, efficient, and high-performance architectures, pivotal for in-memory computing applications where data storage and processing are co-located [5]. This paper studies three ways to integrate TiO<sub><em>x</em></sub>-based resistive memory into passive crossbar array structures, using chemical mechanical polishing (CMP) processes, focusing on identifying the optimal integration techniques.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100251"},"PeriodicalIF":2.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000145/pdfft?md5=636ca20e86a04bf9828411b55d748881&pid=1-s2.0-S2590007224000145-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Damascene versus subtractive line CMP process for resistive memory crossbars BEOL integration\",\"authors\":\"Raphaël Dawant ,&nbsp;Matthieu Gaudreau ,&nbsp;Marc-Antoine Roy ,&nbsp;Pierre-Antoine Mouny ,&nbsp;Matthieu Valdenaire ,&nbsp;Pierre Gliech ,&nbsp;Javier Arias Zapata ,&nbsp;Malek Zegaoui ,&nbsp;Fabien Alibart ,&nbsp;Dominique Drouin ,&nbsp;Serge Ecoffey\",\"doi\":\"10.1016/j.mne.2024.100251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, resistive memories have emerged as a pivotal advancement in the realm of electronics, offering numerous advantages in terms of energy efficiency, scalability, and non-volatility [1]. Characterized by their unique resistive switching behavior, these memories are well-suited for a variety of applications, ranging from high-density data storage to neuromorphic computing [2]. Their potential is further enhanced by their compatibility with advanced semiconductor processes, enabling seamless integration into modern electronic circuits [3]. A particularly promising avenue for resistive memory lies in its integration at the Back-End-of-Line (BEOL) stage of semiconductor manufacturing [4]. BEOL integration involves processes that occur after the fabrication of the transistors, primarily focusing on creating interconnections that electrically link these transistors. Integrating resistive memories at this stage can lead to compact, efficient, and high-performance architectures, pivotal for in-memory computing applications where data storage and processing are co-located [5]. This paper studies three ways to integrate TiO<sub><em>x</em></sub>-based resistive memory into passive crossbar array structures, using chemical mechanical polishing (CMP) processes, focusing on identifying the optimal integration techniques.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"23 \",\"pages\":\"Article 100251\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000145/pdfft?md5=636ca20e86a04bf9828411b55d748881&pid=1-s2.0-S2590007224000145-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,电阻式存储器在电子领域取得了举足轻重的进步,在能效、可扩展性和非挥发性方面具有诸多优势[1]。这些存储器具有独特的电阻开关行为,非常适合从高密度数据存储到神经形态计算等各种应用[2]。它们与先进半导体工艺的兼容性进一步增强了其潜力,使其能够无缝集成到现代电子电路中[3]。电阻式存储器的一个特别有前途的途径是在半导体制造的生产线后端(BEOL)阶段进行集成[4]。BEOL 集成涉及晶体管制造之后的流程,主要集中在创建将这些晶体管电气连接起来的互连。在这一阶段集成电阻式存储器可实现紧凑、高效和高性能的架构,这对于数据存储和处理位于同一地点的内存计算应用至关重要[5]。本文研究了使用化学机械抛光 (CMP) 工艺将基于 TiOx 的电阻式存储器集成到无源横杆阵列结构中的三种方法,重点是确定最佳集成技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Damascene versus subtractive line CMP process for resistive memory crossbars BEOL integration

Damascene versus subtractive line CMP process for resistive memory crossbars BEOL integration

In recent years, resistive memories have emerged as a pivotal advancement in the realm of electronics, offering numerous advantages in terms of energy efficiency, scalability, and non-volatility [1]. Characterized by their unique resistive switching behavior, these memories are well-suited for a variety of applications, ranging from high-density data storage to neuromorphic computing [2]. Their potential is further enhanced by their compatibility with advanced semiconductor processes, enabling seamless integration into modern electronic circuits [3]. A particularly promising avenue for resistive memory lies in its integration at the Back-End-of-Line (BEOL) stage of semiconductor manufacturing [4]. BEOL integration involves processes that occur after the fabrication of the transistors, primarily focusing on creating interconnections that electrically link these transistors. Integrating resistive memories at this stage can lead to compact, efficient, and high-performance architectures, pivotal for in-memory computing applications where data storage and processing are co-located [5]. This paper studies three ways to integrate TiOx-based resistive memory into passive crossbar array structures, using chemical mechanical polishing (CMP) processes, focusing on identifying the optimal integration techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信