Xuan Chen, Abbas Ostovan, Maryam Arabi*, Yunqing Wang, Lingxin Chen and Jinhua Li*,
{"title":"基于分子印迹的 SERS 检测策略,用于大尺寸蛋白质定量和抑制非特异性识别","authors":"Xuan Chen, Abbas Ostovan, Maryam Arabi*, Yunqing Wang, Lingxin Chen and Jinhua Li*, ","doi":"10.1021/acs.analchem.4c00541","DOIUrl":null,"url":null,"abstract":"<p >Molecular imprinting-based surface-enhanced Raman scattering (MI-SERS) sensors have shown remarkable potential from an academic standpoint. However, their practical applications, especially in the detection of large-size protein (≥10 nm), face challenges due to the lack of versatile sensing strategies and nonspecific fouling of matrix species. Herein, we propose a Raman reporter inspector mechanism (RRIM) implemented on a protein-imprinted polydopamine (PDA) layer coated on the SERS active substrate. In the RRIM, after large-size protein recognition, the permeability of the PDA imprinted cavities undergoes changes that are scrutinized by Raman reporter molecules. Target proteins can specifically bind and fully occupy the imprinted cavities, whereas matrix species cannot. Then, Raman reporter molecules with suitable size are introduced to serve as both inspectors of the recognition status and inducers of the SERS signal, which can only penetrate through the vacant and nonspecifically filled cavities. Consequently, changes in the SERS signal exclusively originate from the specific binding of target proteins, while the nonspecific recognition of matrix species is curbed. The RRIM enables reproducible quantitation of the large-size cyanobacteria-specific protein model (≥10 nm), phycocyanin, at the level down to 2.6 × 10<sup>–3</sup> μg L<sup>–1</sup>. Finally, the practical applicability of the RRIM is confirmed by accurately analyzing crude urban waterway samples over 21 min without any pretreatment.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 16","pages":"6417–6425"},"PeriodicalIF":6.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Imprinting-Based SERS Detection Strategy for the Large-Size Protein Quantitation and Curbing Non-Specific Recognition\",\"authors\":\"Xuan Chen, Abbas Ostovan, Maryam Arabi*, Yunqing Wang, Lingxin Chen and Jinhua Li*, \",\"doi\":\"10.1021/acs.analchem.4c00541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Molecular imprinting-based surface-enhanced Raman scattering (MI-SERS) sensors have shown remarkable potential from an academic standpoint. However, their practical applications, especially in the detection of large-size protein (≥10 nm), face challenges due to the lack of versatile sensing strategies and nonspecific fouling of matrix species. Herein, we propose a Raman reporter inspector mechanism (RRIM) implemented on a protein-imprinted polydopamine (PDA) layer coated on the SERS active substrate. In the RRIM, after large-size protein recognition, the permeability of the PDA imprinted cavities undergoes changes that are scrutinized by Raman reporter molecules. Target proteins can specifically bind and fully occupy the imprinted cavities, whereas matrix species cannot. Then, Raman reporter molecules with suitable size are introduced to serve as both inspectors of the recognition status and inducers of the SERS signal, which can only penetrate through the vacant and nonspecifically filled cavities. Consequently, changes in the SERS signal exclusively originate from the specific binding of target proteins, while the nonspecific recognition of matrix species is curbed. The RRIM enables reproducible quantitation of the large-size cyanobacteria-specific protein model (≥10 nm), phycocyanin, at the level down to 2.6 × 10<sup>–3</sup> μg L<sup>–1</sup>. Finally, the practical applicability of the RRIM is confirmed by accurately analyzing crude urban waterway samples over 21 min without any pretreatment.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"96 16\",\"pages\":\"6417–6425\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c00541\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c00541","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Molecular Imprinting-Based SERS Detection Strategy for the Large-Size Protein Quantitation and Curbing Non-Specific Recognition
Molecular imprinting-based surface-enhanced Raman scattering (MI-SERS) sensors have shown remarkable potential from an academic standpoint. However, their practical applications, especially in the detection of large-size protein (≥10 nm), face challenges due to the lack of versatile sensing strategies and nonspecific fouling of matrix species. Herein, we propose a Raman reporter inspector mechanism (RRIM) implemented on a protein-imprinted polydopamine (PDA) layer coated on the SERS active substrate. In the RRIM, after large-size protein recognition, the permeability of the PDA imprinted cavities undergoes changes that are scrutinized by Raman reporter molecules. Target proteins can specifically bind and fully occupy the imprinted cavities, whereas matrix species cannot. Then, Raman reporter molecules with suitable size are introduced to serve as both inspectors of the recognition status and inducers of the SERS signal, which can only penetrate through the vacant and nonspecifically filled cavities. Consequently, changes in the SERS signal exclusively originate from the specific binding of target proteins, while the nonspecific recognition of matrix species is curbed. The RRIM enables reproducible quantitation of the large-size cyanobacteria-specific protein model (≥10 nm), phycocyanin, at the level down to 2.6 × 10–3 μg L–1. Finally, the practical applicability of the RRIM is confirmed by accurately analyzing crude urban waterway samples over 21 min without any pretreatment.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.