用于动态频谱预测的时空注意力辅助图卷积网络

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"用于动态频谱预测的时空注意力辅助图卷积网络","authors":"","doi":"10.1016/j.icte.2024.02.009","DOIUrl":null,"url":null,"abstract":"<div><p>To solve the spectrum scarcity problem, dynamic spectrum access (DSA) technology has emerged as a promising solution. Effectively implementing DSA demands accurate and efficient spectrum prediction. However, complex spatiotemporal correlation and heterogeneity in spectrum observations usually make spectral prediction arduous and even ambiguous. In this letter, we propose a spectrum prediction method based on an attention-aided graph convolutional neural network (AttGCN) to capture features in both spatial and temporal dimensions. By leveraging the attention mechanism, the AttGCN adapts its attention weights at different time steps and spatial positions, thus enabling itself to seize changes in spatiotemporal correlations dynamically. Simulation results show that the proposed spectrum prediction method performs better than baseline algorithms in long-term forecasting tasks.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 4","pages":"Pages 792-797"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959524000225/pdfft?md5=8d3cac8af9fa005ab13760b2a0d0f22c&pid=1-s2.0-S2405959524000225-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal attention aided graph convolution networks for dynamic spectrum prediction\",\"authors\":\"\",\"doi\":\"10.1016/j.icte.2024.02.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To solve the spectrum scarcity problem, dynamic spectrum access (DSA) technology has emerged as a promising solution. Effectively implementing DSA demands accurate and efficient spectrum prediction. However, complex spatiotemporal correlation and heterogeneity in spectrum observations usually make spectral prediction arduous and even ambiguous. In this letter, we propose a spectrum prediction method based on an attention-aided graph convolutional neural network (AttGCN) to capture features in both spatial and temporal dimensions. By leveraging the attention mechanism, the AttGCN adapts its attention weights at different time steps and spatial positions, thus enabling itself to seize changes in spatiotemporal correlations dynamically. Simulation results show that the proposed spectrum prediction method performs better than baseline algorithms in long-term forecasting tasks.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 4\",\"pages\":\"Pages 792-797\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000225/pdfft?md5=8d3cac8af9fa005ab13760b2a0d0f22c&pid=1-s2.0-S2405959524000225-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000225\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000225","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为解决频谱稀缺问题,动态频谱接入(DSA)技术已成为一种前景广阔的解决方案。要有效实施动态频谱存取技术,就必须进行准确高效的频谱预测。然而,频谱观测中复杂的时空相关性和异质性通常会使频谱预测变得困难甚至模糊。在这封信中,我们提出了一种基于注意力辅助图卷积神经网络(AttGCN)的频谱预测方法,以捕捉空间和时间维度的特征。通过利用注意力机制,AttGCN 在不同的时间步长和空间位置上调整其注意力权重,从而使自身能够动态地捕捉时空相关性的变化。仿真结果表明,所提出的频谱预测方法在长期预测任务中的表现优于基准算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal attention aided graph convolution networks for dynamic spectrum prediction

To solve the spectrum scarcity problem, dynamic spectrum access (DSA) technology has emerged as a promising solution. Effectively implementing DSA demands accurate and efficient spectrum prediction. However, complex spatiotemporal correlation and heterogeneity in spectrum observations usually make spectral prediction arduous and even ambiguous. In this letter, we propose a spectrum prediction method based on an attention-aided graph convolutional neural network (AttGCN) to capture features in both spatial and temporal dimensions. By leveraging the attention mechanism, the AttGCN adapts its attention weights at different time steps and spatial positions, thus enabling itself to seize changes in spatiotemporal correlations dynamically. Simulation results show that the proposed spectrum prediction method performs better than baseline algorithms in long-term forecasting tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信