Sari Eka Pratiwi, Ysrafil Ysrafil, Mardhia Mardhia, Mahyarudin Mahyarudin, M. I. Ilmiawan, Heru Fajar Trianto, Delima Fajar Liana, Yuri Amia
{"title":"基于人乳头瘤病毒 16 和 18 的 E6 和 E7 蛋白的新型多位点治疗性疫苗:硅学方法","authors":"Sari Eka Pratiwi, Ysrafil Ysrafil, Mardhia Mardhia, Mahyarudin Mahyarudin, M. I. Ilmiawan, Heru Fajar Trianto, Delima Fajar Liana, Yuri Amia","doi":"10.34172/bi.2024.27846","DOIUrl":null,"url":null,"abstract":"Introduction: The current vaccine strategies to prevent cervical cancer are effective only for individuals unexposed to HPV, lacking therapeutic effects against pre-existing infections. Multiepitope vaccines, using an immunoinformatic approach, are promising against tumors and viral infections because of their high specificity, safety, and stability, as well as the cheap cost of development. Methods: This study employed computer-based immunoinformatic analysis to design therapeutic multiepitope vaccines against cervical cancer using oncoproteins E6 and E7 of HPV 16 and 18. Several immunoinformatic tools were applied to analyze potential vaccine constructs capable of stimulating immune responses against both oncoproteins. Results: The constructed vaccine exhibited antigenic, immunogenic, nonallergenic, nontoxic, stable, and soluble characteristics. Additionally, it effectively interacted with TLR2 and TLR4, showing high binding capacity. Computational analysis indicated the vaccine could induce immune responses through the elevation of cytokine levels after the third injection, antibody production, activation of memory B and T cells, and promotion of increased dendritic cell counts. Conclusion: The novel multiepitope vaccine based on E6 and E7 presented as a promising candidate for combating HPV infections and associated cervical cancer. Further in vitro and in vivo studies were essential to validate the efficacy and safety of the vaccine.","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel therapeutic multiepitope vaccine based on oncoprotein E6 and E7 of HPV 16 and 18: An in silico approach\",\"authors\":\"Sari Eka Pratiwi, Ysrafil Ysrafil, Mardhia Mardhia, Mahyarudin Mahyarudin, M. I. Ilmiawan, Heru Fajar Trianto, Delima Fajar Liana, Yuri Amia\",\"doi\":\"10.34172/bi.2024.27846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The current vaccine strategies to prevent cervical cancer are effective only for individuals unexposed to HPV, lacking therapeutic effects against pre-existing infections. Multiepitope vaccines, using an immunoinformatic approach, are promising against tumors and viral infections because of their high specificity, safety, and stability, as well as the cheap cost of development. Methods: This study employed computer-based immunoinformatic analysis to design therapeutic multiepitope vaccines against cervical cancer using oncoproteins E6 and E7 of HPV 16 and 18. Several immunoinformatic tools were applied to analyze potential vaccine constructs capable of stimulating immune responses against both oncoproteins. Results: The constructed vaccine exhibited antigenic, immunogenic, nonallergenic, nontoxic, stable, and soluble characteristics. Additionally, it effectively interacted with TLR2 and TLR4, showing high binding capacity. Computational analysis indicated the vaccine could induce immune responses through the elevation of cytokine levels after the third injection, antibody production, activation of memory B and T cells, and promotion of increased dendritic cell counts. Conclusion: The novel multiepitope vaccine based on E6 and E7 presented as a promising candidate for combating HPV infections and associated cervical cancer. Further in vitro and in vivo studies were essential to validate the efficacy and safety of the vaccine.\",\"PeriodicalId\":48614,\"journal\":{\"name\":\"Bioimpacts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimpacts\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.34172/bi.2024.27846\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.2024.27846","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A novel therapeutic multiepitope vaccine based on oncoprotein E6 and E7 of HPV 16 and 18: An in silico approach
Introduction: The current vaccine strategies to prevent cervical cancer are effective only for individuals unexposed to HPV, lacking therapeutic effects against pre-existing infections. Multiepitope vaccines, using an immunoinformatic approach, are promising against tumors and viral infections because of their high specificity, safety, and stability, as well as the cheap cost of development. Methods: This study employed computer-based immunoinformatic analysis to design therapeutic multiepitope vaccines against cervical cancer using oncoproteins E6 and E7 of HPV 16 and 18. Several immunoinformatic tools were applied to analyze potential vaccine constructs capable of stimulating immune responses against both oncoproteins. Results: The constructed vaccine exhibited antigenic, immunogenic, nonallergenic, nontoxic, stable, and soluble characteristics. Additionally, it effectively interacted with TLR2 and TLR4, showing high binding capacity. Computational analysis indicated the vaccine could induce immune responses through the elevation of cytokine levels after the third injection, antibody production, activation of memory B and T cells, and promotion of increased dendritic cell counts. Conclusion: The novel multiepitope vaccine based on E6 and E7 presented as a promising candidate for combating HPV infections and associated cervical cancer. Further in vitro and in vivo studies were essential to validate the efficacy and safety of the vaccine.
BioimpactsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍:
BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.