{"title":"枯草芽孢杆菌发酵的鞑靼法葛(Fagopyrum tataricum Gaertner)具有更强的抗炎和改善非酒精性脂肪肝(NAFLD)的作用","authors":"Chan-Hwi Park, Hyun Kang, Sung-Gyu Lee","doi":"10.3390/fermentation10030116","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the enhanced anti-inflammatory activity and the effects on non-alcoholic fatty liver disease (NAFLD) of fermented Fagopyrum tataricum (F. tataricum) Gaertner extract (FFT) through in vitro analysis. We utilized high-performance liquid chromatography (HPLC) to analyze the non-fermented F. tataricum Gaertner extract (NFT) and the marker components, rutin and quercetin in FFT, to confirm changes in composition due to fermentation. The anti-inflammatory activity of NFT and FFT was evaluated using a lipopolysaccharide (LPS)-induced RAW 264.7 cell inflammation model. Simultaneously, the NAFLD improvement effects were measured by evaluating lipid accumulation and the expression of lipid synthesis regulators in free fatty acid (FFA)-induced HepG2 cells. HPLC analysis confirmed an increase in rutin content after the fermentation of F. tataricum Gaertner. Upon treatment with NFT and FFT at a concentration of 400 μg/mL, LPS-induced nitric oxide (NO) production values in RAW 264.7 cells were reduced to 16.12 μM and 2.09 μM, respectively, indicating enhanced significant inhibition (p < 0.05) of NO production through fermentation. FFT demonstrated the significant inhibition (p < 0.05) of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) protein, and inflammatory cytokine mRNA expression through the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in LPS-induced RAW 264.7 cells. In FFA-induced HepG2 cells, FFT significant suppressed (p < 0.05) lipid accumulation and the expression of sterol regulatory element binding protein (SREBP)-1c, CCAAT/enhancer binding protein (C/EBP)α proteins, and acetyl-CoA carboxylase (ACC) mRNA. The results of this study suggest the potential utilization of FFT as a material for improving NAFLD.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Anti-Inflammatory and Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement Effects of Bacillus subtilis-Fermented Fagopyrum tataricum Gaertner\",\"authors\":\"Chan-Hwi Park, Hyun Kang, Sung-Gyu Lee\",\"doi\":\"10.3390/fermentation10030116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigated the enhanced anti-inflammatory activity and the effects on non-alcoholic fatty liver disease (NAFLD) of fermented Fagopyrum tataricum (F. tataricum) Gaertner extract (FFT) through in vitro analysis. We utilized high-performance liquid chromatography (HPLC) to analyze the non-fermented F. tataricum Gaertner extract (NFT) and the marker components, rutin and quercetin in FFT, to confirm changes in composition due to fermentation. The anti-inflammatory activity of NFT and FFT was evaluated using a lipopolysaccharide (LPS)-induced RAW 264.7 cell inflammation model. Simultaneously, the NAFLD improvement effects were measured by evaluating lipid accumulation and the expression of lipid synthesis regulators in free fatty acid (FFA)-induced HepG2 cells. HPLC analysis confirmed an increase in rutin content after the fermentation of F. tataricum Gaertner. Upon treatment with NFT and FFT at a concentration of 400 μg/mL, LPS-induced nitric oxide (NO) production values in RAW 264.7 cells were reduced to 16.12 μM and 2.09 μM, respectively, indicating enhanced significant inhibition (p < 0.05) of NO production through fermentation. FFT demonstrated the significant inhibition (p < 0.05) of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) protein, and inflammatory cytokine mRNA expression through the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in LPS-induced RAW 264.7 cells. In FFA-induced HepG2 cells, FFT significant suppressed (p < 0.05) lipid accumulation and the expression of sterol regulatory element binding protein (SREBP)-1c, CCAAT/enhancer binding protein (C/EBP)α proteins, and acetyl-CoA carboxylase (ACC) mRNA. The results of this study suggest the potential utilization of FFT as a material for improving NAFLD.\",\"PeriodicalId\":12379,\"journal\":{\"name\":\"Fermentation\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation10030116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10030116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced Anti-Inflammatory and Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement Effects of Bacillus subtilis-Fermented Fagopyrum tataricum Gaertner
In this study, we investigated the enhanced anti-inflammatory activity and the effects on non-alcoholic fatty liver disease (NAFLD) of fermented Fagopyrum tataricum (F. tataricum) Gaertner extract (FFT) through in vitro analysis. We utilized high-performance liquid chromatography (HPLC) to analyze the non-fermented F. tataricum Gaertner extract (NFT) and the marker components, rutin and quercetin in FFT, to confirm changes in composition due to fermentation. The anti-inflammatory activity of NFT and FFT was evaluated using a lipopolysaccharide (LPS)-induced RAW 264.7 cell inflammation model. Simultaneously, the NAFLD improvement effects were measured by evaluating lipid accumulation and the expression of lipid synthesis regulators in free fatty acid (FFA)-induced HepG2 cells. HPLC analysis confirmed an increase in rutin content after the fermentation of F. tataricum Gaertner. Upon treatment with NFT and FFT at a concentration of 400 μg/mL, LPS-induced nitric oxide (NO) production values in RAW 264.7 cells were reduced to 16.12 μM and 2.09 μM, respectively, indicating enhanced significant inhibition (p < 0.05) of NO production through fermentation. FFT demonstrated the significant inhibition (p < 0.05) of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) protein, and inflammatory cytokine mRNA expression through the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in LPS-induced RAW 264.7 cells. In FFA-induced HepG2 cells, FFT significant suppressed (p < 0.05) lipid accumulation and the expression of sterol regulatory element binding protein (SREBP)-1c, CCAAT/enhancer binding protein (C/EBP)α proteins, and acetyl-CoA carboxylase (ACC) mRNA. The results of this study suggest the potential utilization of FFT as a material for improving NAFLD.