制造集成光触发质子泵的混合装置

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jacqueline Figueiredo da Silva , Vesna Bacheva , Ute Drechsler , Philippe Nicollier , Steffen Reidt , Dimitrios Fotiadis , Armin Knoll , Heiko Wolf
{"title":"制造集成光触发质子泵的混合装置","authors":"Jacqueline Figueiredo da Silva ,&nbsp;Vesna Bacheva ,&nbsp;Ute Drechsler ,&nbsp;Philippe Nicollier ,&nbsp;Steffen Reidt ,&nbsp;Dimitrios Fotiadis ,&nbsp;Armin Knoll ,&nbsp;Heiko Wolf","doi":"10.1016/j.mne.2024.100250","DOIUrl":null,"url":null,"abstract":"<div><p>Biological ion pumps, such as bacteriorhodopsin (bR), utilize photons to move ions against concentration gradients, offering energy harvesting and spatiotemporal control of chemical gradients. This capability goes far beyond the capabilities of today's synthetic devices, suggesting a hybrid approach to embed bRs in synthetic devices in order to direct the proton flow towards useful system applications. In this study, a hybrid silicon-based nanochannel network with integrated purple membranes (PM) containing bR was fabricated. The fabrication method combines thermal scanning probe lithography, etching techniques, atomic layer deposition, plasma-enhanced chemical vapor deposition, and photolithography to create devices with buried nanochannels on silicon substrates. PM patches were deposited onto specified sites by a tunable nanofluidic confinement apparatus. The resulting device holds the potential for locally controlling directed ion transport in micrometer scale devices, a first step towards applications, such as locally affected proton catalyzed chemical reaction networks. Furthermore, this fabrication strategy, employing a maskless overlay, is a tool for constructing intricate nanofluidic network designs which are mechanically robust and straightforward to fabricate.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100250"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000133/pdfft?md5=907b0512bf199bb1eefa3b01cb6f097e&pid=1-s2.0-S2590007224000133-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a hybrid device for the integration of light-triggered proton pumps\",\"authors\":\"Jacqueline Figueiredo da Silva ,&nbsp;Vesna Bacheva ,&nbsp;Ute Drechsler ,&nbsp;Philippe Nicollier ,&nbsp;Steffen Reidt ,&nbsp;Dimitrios Fotiadis ,&nbsp;Armin Knoll ,&nbsp;Heiko Wolf\",\"doi\":\"10.1016/j.mne.2024.100250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biological ion pumps, such as bacteriorhodopsin (bR), utilize photons to move ions against concentration gradients, offering energy harvesting and spatiotemporal control of chemical gradients. This capability goes far beyond the capabilities of today's synthetic devices, suggesting a hybrid approach to embed bRs in synthetic devices in order to direct the proton flow towards useful system applications. In this study, a hybrid silicon-based nanochannel network with integrated purple membranes (PM) containing bR was fabricated. The fabrication method combines thermal scanning probe lithography, etching techniques, atomic layer deposition, plasma-enhanced chemical vapor deposition, and photolithography to create devices with buried nanochannels on silicon substrates. PM patches were deposited onto specified sites by a tunable nanofluidic confinement apparatus. The resulting device holds the potential for locally controlling directed ion transport in micrometer scale devices, a first step towards applications, such as locally affected proton catalyzed chemical reaction networks. Furthermore, this fabrication strategy, employing a maskless overlay, is a tool for constructing intricate nanofluidic network designs which are mechanically robust and straightforward to fabricate.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"23 \",\"pages\":\"Article 100250\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000133/pdfft?md5=907b0512bf199bb1eefa3b01cb6f097e&pid=1-s2.0-S2590007224000133-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

生物离子泵(如细菌发光素(bR))利用光子逆浓度梯度移动离子,提供能量收集和化学梯度的时空控制。这种能力远远超出了当今合成设备的能力,因此建议采用混合方法将 bR 嵌入合成设备,以引导质子流向有用的系统应用。在这项研究中,制备了一种含有 bR 的集成紫膜(PM)的混合硅基纳米通道网络。该制造方法结合了热扫描探针光刻、蚀刻技术、原子层沉积、等离子体增强化学气相沉积和光刻技术,在硅基底上制造出具有埋藏纳米通道的器件。可调纳米流体约束装置将 PM 贴片沉积到指定位置。由此产生的装置具有在微米级装置中局部控制定向离子传输的潜力,这是向应用(如局部受影响的质子催化化学反应网络)迈出的第一步。此外,这种采用无掩模覆盖的制造策略是构建复杂的纳米流体网络设计的一种工具,它具有机械坚固性和制造简便性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fabrication of a hybrid device for the integration of light-triggered proton pumps

Fabrication of a hybrid device for the integration of light-triggered proton pumps

Biological ion pumps, such as bacteriorhodopsin (bR), utilize photons to move ions against concentration gradients, offering energy harvesting and spatiotemporal control of chemical gradients. This capability goes far beyond the capabilities of today's synthetic devices, suggesting a hybrid approach to embed bRs in synthetic devices in order to direct the proton flow towards useful system applications. In this study, a hybrid silicon-based nanochannel network with integrated purple membranes (PM) containing bR was fabricated. The fabrication method combines thermal scanning probe lithography, etching techniques, atomic layer deposition, plasma-enhanced chemical vapor deposition, and photolithography to create devices with buried nanochannels on silicon substrates. PM patches were deposited onto specified sites by a tunable nanofluidic confinement apparatus. The resulting device holds the potential for locally controlling directed ion transport in micrometer scale devices, a first step towards applications, such as locally affected proton catalyzed chemical reaction networks. Furthermore, this fabrication strategy, employing a maskless overlay, is a tool for constructing intricate nanofluidic network designs which are mechanically robust and straightforward to fabricate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信