Tingyang Ai, Longchen Shang, Bin Li, Jing Li* and Rui Qin*,
{"title":"魔芋低聚糖通过肠道微生物群调节和Treg/Th17调控减轻卵巢切除术诱发的骨质流失","authors":"Tingyang Ai, Longchen Shang, Bin Li, Jing Li* and Rui Qin*, ","doi":"10.1021/acs.jafc.4c00281","DOIUrl":null,"url":null,"abstract":"<p >Oligosaccharides from the plant <i>Amorphophallus konjac</i> were potentially effective in menopausal osteoporosis due to their prebiotic attributes. The present work mainly studied the regulation of konjac oligosaccharides (KOS) on menopausal bone loss. Experiments were carried out in ovariectomized (OVX) rats, and various contents of KOS were correlated with diet. After 3 months of treatment, the degree of osteoporosis was determined by bone mineral density and femoral microarchitecture. The research data showed that the 8% dietary KOS significantly alleviated bone loss in OVX rats, as it promoted the bone trabecular number by 134.2% and enhanced the bone bending stiffness by 103.1%. From the perspective of the gut–bone axis, KOS promoted gut barrier repair and decreased pro-inflammatory cytokines. Besides, KOS promoted the growth of <i>Bifidobacterium longum</i> and restored Treg/Th17 balance in bone marrow. The two aspects contributed to decreased osteoclastogenic activity and thus inhibited inflammation-related bone loss. This work extended current knowledge of prebiotic inhibition on bone loss and provide an alternative strategy for osteoporosis prevention.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"72 14","pages":"7969–7979"},"PeriodicalIF":6.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Konjac Oligosaccharides Alleviated Ovariectomy-Induced Bone Loss through Gut Microbiota Modulation and Treg/Th17 Regulation\",\"authors\":\"Tingyang Ai, Longchen Shang, Bin Li, Jing Li* and Rui Qin*, \",\"doi\":\"10.1021/acs.jafc.4c00281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Oligosaccharides from the plant <i>Amorphophallus konjac</i> were potentially effective in menopausal osteoporosis due to their prebiotic attributes. The present work mainly studied the regulation of konjac oligosaccharides (KOS) on menopausal bone loss. Experiments were carried out in ovariectomized (OVX) rats, and various contents of KOS were correlated with diet. After 3 months of treatment, the degree of osteoporosis was determined by bone mineral density and femoral microarchitecture. The research data showed that the 8% dietary KOS significantly alleviated bone loss in OVX rats, as it promoted the bone trabecular number by 134.2% and enhanced the bone bending stiffness by 103.1%. From the perspective of the gut–bone axis, KOS promoted gut barrier repair and decreased pro-inflammatory cytokines. Besides, KOS promoted the growth of <i>Bifidobacterium longum</i> and restored Treg/Th17 balance in bone marrow. The two aspects contributed to decreased osteoclastogenic activity and thus inhibited inflammation-related bone loss. This work extended current knowledge of prebiotic inhibition on bone loss and provide an alternative strategy for osteoporosis prevention.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"72 14\",\"pages\":\"7969–7979\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jafc.4c00281\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.4c00281","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Konjac Oligosaccharides Alleviated Ovariectomy-Induced Bone Loss through Gut Microbiota Modulation and Treg/Th17 Regulation
Oligosaccharides from the plant Amorphophallus konjac were potentially effective in menopausal osteoporosis due to their prebiotic attributes. The present work mainly studied the regulation of konjac oligosaccharides (KOS) on menopausal bone loss. Experiments were carried out in ovariectomized (OVX) rats, and various contents of KOS were correlated with diet. After 3 months of treatment, the degree of osteoporosis was determined by bone mineral density and femoral microarchitecture. The research data showed that the 8% dietary KOS significantly alleviated bone loss in OVX rats, as it promoted the bone trabecular number by 134.2% and enhanced the bone bending stiffness by 103.1%. From the perspective of the gut–bone axis, KOS promoted gut barrier repair and decreased pro-inflammatory cytokines. Besides, KOS promoted the growth of Bifidobacterium longum and restored Treg/Th17 balance in bone marrow. The two aspects contributed to decreased osteoclastogenic activity and thus inhibited inflammation-related bone loss. This work extended current knowledge of prebiotic inhibition on bone loss and provide an alternative strategy for osteoporosis prevention.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.