{"title":"通过采用垂直栅极结构和复合夹层提高增强型氮化镓基 HEMT 功率器件的性能*","authors":"Zhonghao Sun, Jianxun Dai, Huolin Huang, Nan Sun, Jiayu Zhang, Yun Lei, Dawei Li, Kaiming Ma, Huimin Yu, Yanhong Liu, Hui Huang, Yung C Liang","doi":"10.1088/1361-6641/ad31c5","DOIUrl":null,"url":null,"abstract":"In this work, p-n junction vertical gate (JVG) and polarization junction vertical gate (PVG) structures are for the first time proposed to improve the performance of GaN-based enhancement-mode (E-mode) high electron mobility transistor (HEMT) devices. Compared with the control group featuring the vertical gate structure, a highly improved threshold voltage (<italic toggle=\"yes\">V</italic>\n<sub>th</sub>) and breakdown voltage (<italic toggle=\"yes\">BV</italic>) are achieved with the assistance of the extended depletion regions formed by inserting single or composite interlayers. The structure dimensions and physical parameters for device interlayers are optimized by TCAD simulation to adjust the spatial electric field distribution and hence improve the device off-state characteristics. The optimal JVG-HEMT device can reach a <italic toggle=\"yes\">V</italic>\n<sub>th</sub> of 3.4 V, a low on-state resistance (<italic toggle=\"yes\">R</italic>\n<sub>on</sub>) of 0.64 mΩ cm<sup>2</sup>, and a <italic toggle=\"yes\">BV</italic> of 1245 V, while the PVG-HEMT device exhibits a <italic toggle=\"yes\">V</italic>\n<sub>th</sub> of 3.7 V, an <italic toggle=\"yes\">R</italic>\n<sub>on</sub> of 0.65 mΩ cm<sup>2</sup>, and a <italic toggle=\"yes\">BV</italic> of 1184 V, which could be further boosted when an additional field plate design is employed. Thus, the figure-of-merit value of JVG- and PVG-HEMT devices rise to 2.4 and 2.2 GW cm<sup>−2</sup>, respectively, much higher than that for the VG-HEMT control group (1.0 GW cm<sup>−2</sup>). This work provides a novel technical approach to realize higher-performance E-mode HEMTs.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"70 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance improvement of enhancement-mode GaN-based HEMT power devices by employing a vertical gate structure and composite interlayers*\",\"authors\":\"Zhonghao Sun, Jianxun Dai, Huolin Huang, Nan Sun, Jiayu Zhang, Yun Lei, Dawei Li, Kaiming Ma, Huimin Yu, Yanhong Liu, Hui Huang, Yung C Liang\",\"doi\":\"10.1088/1361-6641/ad31c5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, p-n junction vertical gate (JVG) and polarization junction vertical gate (PVG) structures are for the first time proposed to improve the performance of GaN-based enhancement-mode (E-mode) high electron mobility transistor (HEMT) devices. Compared with the control group featuring the vertical gate structure, a highly improved threshold voltage (<italic toggle=\\\"yes\\\">V</italic>\\n<sub>th</sub>) and breakdown voltage (<italic toggle=\\\"yes\\\">BV</italic>) are achieved with the assistance of the extended depletion regions formed by inserting single or composite interlayers. The structure dimensions and physical parameters for device interlayers are optimized by TCAD simulation to adjust the spatial electric field distribution and hence improve the device off-state characteristics. The optimal JVG-HEMT device can reach a <italic toggle=\\\"yes\\\">V</italic>\\n<sub>th</sub> of 3.4 V, a low on-state resistance (<italic toggle=\\\"yes\\\">R</italic>\\n<sub>on</sub>) of 0.64 mΩ cm<sup>2</sup>, and a <italic toggle=\\\"yes\\\">BV</italic> of 1245 V, while the PVG-HEMT device exhibits a <italic toggle=\\\"yes\\\">V</italic>\\n<sub>th</sub> of 3.7 V, an <italic toggle=\\\"yes\\\">R</italic>\\n<sub>on</sub> of 0.65 mΩ cm<sup>2</sup>, and a <italic toggle=\\\"yes\\\">BV</italic> of 1184 V, which could be further boosted when an additional field plate design is employed. Thus, the figure-of-merit value of JVG- and PVG-HEMT devices rise to 2.4 and 2.2 GW cm<sup>−2</sup>, respectively, much higher than that for the VG-HEMT control group (1.0 GW cm<sup>−2</sup>). This work provides a novel technical approach to realize higher-performance E-mode HEMTs.\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad31c5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad31c5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance improvement of enhancement-mode GaN-based HEMT power devices by employing a vertical gate structure and composite interlayers*
In this work, p-n junction vertical gate (JVG) and polarization junction vertical gate (PVG) structures are for the first time proposed to improve the performance of GaN-based enhancement-mode (E-mode) high electron mobility transistor (HEMT) devices. Compared with the control group featuring the vertical gate structure, a highly improved threshold voltage (Vth) and breakdown voltage (BV) are achieved with the assistance of the extended depletion regions formed by inserting single or composite interlayers. The structure dimensions and physical parameters for device interlayers are optimized by TCAD simulation to adjust the spatial electric field distribution and hence improve the device off-state characteristics. The optimal JVG-HEMT device can reach a Vth of 3.4 V, a low on-state resistance (Ron) of 0.64 mΩ cm2, and a BV of 1245 V, while the PVG-HEMT device exhibits a Vth of 3.7 V, an Ron of 0.65 mΩ cm2, and a BV of 1184 V, which could be further boosted when an additional field plate design is employed. Thus, the figure-of-merit value of JVG- and PVG-HEMT devices rise to 2.4 and 2.2 GW cm−2, respectively, much higher than that for the VG-HEMT control group (1.0 GW cm−2). This work provides a novel technical approach to realize higher-performance E-mode HEMTs.
期刊介绍:
Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic.
The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including:
fundamental properties
materials and nanostructures
devices and applications
fabrication and processing
new analytical techniques
simulation
emerging fields:
materials and devices for quantum technologies
hybrid structures and devices
2D and topological materials
metamaterials
semiconductors for energy
flexible electronics.