分层文本分类及其基础:当前研究综述

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Alessandro Zangari, Matteo Marcuzzo, Matteo Rizzo, Lorenzo Giudice, Andrea Albarelli, Andrea Gasparetto
{"title":"分层文本分类及其基础:当前研究综述","authors":"Alessandro Zangari, Matteo Marcuzzo, Matteo Rizzo, Lorenzo Giudice, Andrea Albarelli, Andrea Gasparetto","doi":"10.3390/electronics13071199","DOIUrl":null,"url":null,"abstract":"While collections of documents are often annotated with hierarchically structured concepts, the benefits of these structures are rarely taken into account by classification techniques. Within this context, hierarchical text classification methods are devised to take advantage of the labels’ organization to boost classification performance. In this work, we aim to deliver an updated overview of the current research in this domain. We begin by defining the task and framing it within the broader text classification area, examining important shared concepts such as text representation. Then, we dive into details regarding the specific task, providing a high-level description of its traditional approaches. We then summarize recently proposed methods, highlighting their main contributions. We also provide statistics for the most commonly used datasets and describe the benefits of using evaluation metrics tailored to hierarchical settings. Finally, a selection of recent proposals is benchmarked against non-hierarchical baselines on five public domain-specific datasets. These datasets, along with our code, are made available for future research.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"234 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Text Classification and Its Foundations: A Review of Current Research\",\"authors\":\"Alessandro Zangari, Matteo Marcuzzo, Matteo Rizzo, Lorenzo Giudice, Andrea Albarelli, Andrea Gasparetto\",\"doi\":\"10.3390/electronics13071199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While collections of documents are often annotated with hierarchically structured concepts, the benefits of these structures are rarely taken into account by classification techniques. Within this context, hierarchical text classification methods are devised to take advantage of the labels’ organization to boost classification performance. In this work, we aim to deliver an updated overview of the current research in this domain. We begin by defining the task and framing it within the broader text classification area, examining important shared concepts such as text representation. Then, we dive into details regarding the specific task, providing a high-level description of its traditional approaches. We then summarize recently proposed methods, highlighting their main contributions. We also provide statistics for the most commonly used datasets and describe the benefits of using evaluation metrics tailored to hierarchical settings. Finally, a selection of recent proposals is benchmarked against non-hierarchical baselines on five public domain-specific datasets. These datasets, along with our code, are made available for future research.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13071199\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13071199","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

虽然文档集合通常都标注了分层结构的概念,但分类技术却很少考虑到这些结构的好处。在这种情况下,人们设计了分层文本分类方法,以利用标签的组织来提高分类性能。在这项工作中,我们旨在对这一领域的当前研究进行最新概述。首先,我们对任务进行了定义,并将其纳入更广泛的文本分类领域,研究了文本表征等重要的共享概念。然后,我们深入探讨具体任务的细节,对其传统方法进行高层次描述。然后,我们总结了最近提出的方法,强调了它们的主要贡献。我们还提供了最常用数据集的统计数据,并介绍了针对分层设置使用评估指标的好处。最后,我们在五个特定公共领域的数据集上,以非分层基线为基准,对近期提出的部分建议进行了评测。这些数据集和我们的代码可供未来研究使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Text Classification and Its Foundations: A Review of Current Research
While collections of documents are often annotated with hierarchically structured concepts, the benefits of these structures are rarely taken into account by classification techniques. Within this context, hierarchical text classification methods are devised to take advantage of the labels’ organization to boost classification performance. In this work, we aim to deliver an updated overview of the current research in this domain. We begin by defining the task and framing it within the broader text classification area, examining important shared concepts such as text representation. Then, we dive into details regarding the specific task, providing a high-level description of its traditional approaches. We then summarize recently proposed methods, highlighting their main contributions. We also provide statistics for the most commonly used datasets and describe the benefits of using evaluation metrics tailored to hierarchical settings. Finally, a selection of recent proposals is benchmarked against non-hierarchical baselines on five public domain-specific datasets. These datasets, along with our code, are made available for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics
Electronics Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍: Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信