Michael J. Abere, Richard J. Gallegos, Matthew W. Moorman, Mark A. Rodriguez, Paul G. Kotula, Rick A. Kellogg, David P. Adams
{"title":"常闭热激活不可逆固态铒氢化物开关","authors":"Michael J. Abere, Richard J. Gallegos, Matthew W. Moorman, Mark A. Rodriguez, Paul G. Kotula, Rick A. Kellogg, David P. Adams","doi":"10.1016/j.mne.2024.100243","DOIUrl":null,"url":null,"abstract":"<div><p>A thermally driven, micrometer-scale switch technology has been created that utilizes the ErH<sub>3</sub>/Er<sub>2</sub>O<sub>3</sub> materials system. The technology is comprised of novel thin film switches, interconnects, on-board micro-scale heaters for passive thermal environment sensing, and on-board micro-scale heaters for individualized switch actuation. Switches undergo a thermodynamically stable reduction/oxidation reaction leading to a multi-decade (>11 orders) change in resistance. The resistance contrast remains after cooling to room temperature, making them suitable as thermal fuses. An activation energy of 290 kJ/mol was calculated for the switch reaction, and a thermos-kinetic model was employed to determine switch times of 120 ms at 560 °C with the potential to scale to 1 ms at 680 °C.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100243"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000066/pdfft?md5=02ad29251ac9b08fe75c93a60d170ab3&pid=1-s2.0-S2590007224000066-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Normally closed thermally activated irreversible solid state erbium hydrides switches\",\"authors\":\"Michael J. Abere, Richard J. Gallegos, Matthew W. Moorman, Mark A. Rodriguez, Paul G. Kotula, Rick A. Kellogg, David P. Adams\",\"doi\":\"10.1016/j.mne.2024.100243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A thermally driven, micrometer-scale switch technology has been created that utilizes the ErH<sub>3</sub>/Er<sub>2</sub>O<sub>3</sub> materials system. The technology is comprised of novel thin film switches, interconnects, on-board micro-scale heaters for passive thermal environment sensing, and on-board micro-scale heaters for individualized switch actuation. Switches undergo a thermodynamically stable reduction/oxidation reaction leading to a multi-decade (>11 orders) change in resistance. The resistance contrast remains after cooling to room temperature, making them suitable as thermal fuses. An activation energy of 290 kJ/mol was calculated for the switch reaction, and a thermos-kinetic model was employed to determine switch times of 120 ms at 560 °C with the potential to scale to 1 ms at 680 °C.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"23 \",\"pages\":\"Article 100243\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000066/pdfft?md5=02ad29251ac9b08fe75c93a60d170ab3&pid=1-s2.0-S2590007224000066-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
一种利用 ErH3/Er2O3 材料系统的热驱动微米级开关技术已经问世。该技术由新型薄膜开关、互连器件、用于被动热环境传感的板载微米级加热器和用于个性化开关驱动的板载微米级加热器组成。开关会发生热力学上稳定的还原/氧化反应,导致电阻发生数十年(11 个数量级)的变化。冷却到室温后,电阻对比依然存在,因此适合用作热保险丝。计算得出开关反应的活化能为 290 kJ/mol,并采用热动力学模型确定了在 560 °C 时开关时间为 120 ms,在 680 °C 时开关时间可能达到 1 ms。
Normally closed thermally activated irreversible solid state erbium hydrides switches
A thermally driven, micrometer-scale switch technology has been created that utilizes the ErH3/Er2O3 materials system. The technology is comprised of novel thin film switches, interconnects, on-board micro-scale heaters for passive thermal environment sensing, and on-board micro-scale heaters for individualized switch actuation. Switches undergo a thermodynamically stable reduction/oxidation reaction leading to a multi-decade (>11 orders) change in resistance. The resistance contrast remains after cooling to room temperature, making them suitable as thermal fuses. An activation energy of 290 kJ/mol was calculated for the switch reaction, and a thermos-kinetic model was employed to determine switch times of 120 ms at 560 °C with the potential to scale to 1 ms at 680 °C.