利用人工智能研究恶意软件检测机制之间的关系

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jihyeon Song , Sunoh Choi , Jungtae Kim , Kyungmin Park , Cheolhee Park , Jonghyun Kim , Ikkyun Kim
{"title":"利用人工智能研究恶意软件检测机制之间的关系","authors":"Jihyeon Song ,&nbsp;Sunoh Choi ,&nbsp;Jungtae Kim ,&nbsp;Kyungmin Park ,&nbsp;Cheolhee Park ,&nbsp;Jonghyun Kim ,&nbsp;Ikkyun Kim","doi":"10.1016/j.icte.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Implementation of malware detection using Artificial Intelligence (AI) has emerged as a significant research theme to combat evolving various types of malwares. Researchers implement various detection mechanisms using shallow and deep learning models to counter new malware, and they continue to develop these mechanisms today. However, in the field of malware detection using AI, there are difficulties in collecting data, and it is difficult to compare research content and performance with related studies. Meanwhile, the number of well-organized papers is not sufficient to understand the overall research flow of these related studies. Before starting new research, researchers need to analyze the current state of research in the malware detection field they want to study. Therefore, based on these requirements, we present a summary of the general criteria related to malware detection and a classification table for detection mechanisms. Additionally, we have organized many studies in the field of various types of malware detection so that they can be viewed at a glance. We hope that the provided survey can help new researchers quickly understand the research flow in the field of AI-based malware detection and establish the direction for future research.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 3","pages":"Pages 632-649"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959524000298/pdfft?md5=8c3370dad7e696a91dedc176306bffcb&pid=1-s2.0-S2405959524000298-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A study of the relationship of malware detection mechanisms using Artificial Intelligence\",\"authors\":\"Jihyeon Song ,&nbsp;Sunoh Choi ,&nbsp;Jungtae Kim ,&nbsp;Kyungmin Park ,&nbsp;Cheolhee Park ,&nbsp;Jonghyun Kim ,&nbsp;Ikkyun Kim\",\"doi\":\"10.1016/j.icte.2024.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Implementation of malware detection using Artificial Intelligence (AI) has emerged as a significant research theme to combat evolving various types of malwares. Researchers implement various detection mechanisms using shallow and deep learning models to counter new malware, and they continue to develop these mechanisms today. However, in the field of malware detection using AI, there are difficulties in collecting data, and it is difficult to compare research content and performance with related studies. Meanwhile, the number of well-organized papers is not sufficient to understand the overall research flow of these related studies. Before starting new research, researchers need to analyze the current state of research in the malware detection field they want to study. Therefore, based on these requirements, we present a summary of the general criteria related to malware detection and a classification table for detection mechanisms. Additionally, we have organized many studies in the field of various types of malware detection so that they can be viewed at a glance. We hope that the provided survey can help new researchers quickly understand the research flow in the field of AI-based malware detection and establish the direction for future research.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 3\",\"pages\":\"Pages 632-649\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000298/pdfft?md5=8c3370dad7e696a91dedc176306bffcb&pid=1-s2.0-S2405959524000298-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000298\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000298","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

利用人工智能(AI)进行恶意软件检测已成为打击不断演变的各类恶意软件的重要研究课题。研究人员利用浅层学习和深度学习模型实施了各种检测机制,以应对新的恶意软件,如今他们仍在继续开发这些机制。然而,在利用人工智能检测恶意软件领域,数据收集存在困难,很难将研究内容和绩效与相关研究进行比较。同时,条理清晰的论文数量不足以了解这些相关研究的整体研究流程。在开始新的研究之前,研究人员需要分析他们想要研究的恶意软件检测领域的研究现状。因此,根据这些要求,我们总结了与恶意软件检测相关的一般标准和检测机制分类表。此外,我们还整理了各类恶意软件检测领域的许多研究,以便一目了然。我们希望所提供的调查报告能帮助新研究人员快速了解基于人工智能的恶意软件检测领域的研究流程,并确定未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of the relationship of malware detection mechanisms using Artificial Intelligence

Implementation of malware detection using Artificial Intelligence (AI) has emerged as a significant research theme to combat evolving various types of malwares. Researchers implement various detection mechanisms using shallow and deep learning models to counter new malware, and they continue to develop these mechanisms today. However, in the field of malware detection using AI, there are difficulties in collecting data, and it is difficult to compare research content and performance with related studies. Meanwhile, the number of well-organized papers is not sufficient to understand the overall research flow of these related studies. Before starting new research, researchers need to analyze the current state of research in the malware detection field they want to study. Therefore, based on these requirements, we present a summary of the general criteria related to malware detection and a classification table for detection mechanisms. Additionally, we have organized many studies in the field of various types of malware detection so that they can be viewed at a glance. We hope that the provided survey can help new researchers quickly understand the research flow in the field of AI-based malware detection and establish the direction for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信