通过亲和超滤与 UPLC-Q-TOF-MS 联用技术,以凝血酶为靶标筛选安氏何首乌中的抗凝血活性成分。

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Phytochemical Analysis Pub Date : 2024-07-01 Epub Date: 2024-03-18 DOI:10.1002/pca.3346
Shiyi Huang, Xiangchang He, Chencun Huang, Weihe He, Hongqing Zhao, Jie Dai, Guangming Xu
{"title":"通过亲和超滤与 UPLC-Q-TOF-MS 联用技术,以凝血酶为靶标筛选安氏何首乌中的抗凝血活性成分。","authors":"Shiyi Huang, Xiangchang He, Chencun Huang, Weihe He, Hongqing Zhao, Jie Dai, Guangming Xu","doi":"10.1002/pca.3346","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Polygonum amplexicaule D. Don var. sinense Forb (PAF), a medicinal plant, has the effect of promoting blood circulation and removing blood stasis. However, the active compounds and targets of its anticoagulant effect are still unclear.</p><p><strong>Objectives: </strong>This study aims to establish an effective reversely thrombin-targeted screening method for anticoagulant active components in PAF by affinity ultrafiltration (AUF) coupled with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-Q-TOF-MS).</p><p><strong>Methods: </strong>Different polar parts of PAF were screened for potential thrombin ligands by AUF-HPLC and identified by UPLC-Q-TOF-MS. After studying the affinity between ligands and thrombin by molecular docking, the antithrombotic activity of ligands was detected in vivo by zebrafish thrombus model, and in vitro by chromogenic substrate method. The mechanism of such ligands on thrombin was further studied by coagulation factor assay.</p><p><strong>Results: </strong>Eleven potential thrombin ligands from PAF were screened by the AUF-UPLC-Q-TOF-MS method, and two compounds (butyl gallate and β-sitosterol) with significant anticoagulant activity were discovered via in vitro and in vivo activity testing.</p><p><strong>Conclusion: </strong>A method system based on AUF-UPLC-Q-TOF-MS, molecular docking and in vivo and in vitro experiments also provided a powerful tool for further exploration of anticoagulant active components in PAF.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thrombin-targeted screening of anticoagulant active components from Polygonum amplexicaule D. Don var. sinense Forb by affinity ultrafiltration coupled with UPLC-Q-TOF-MS.\",\"authors\":\"Shiyi Huang, Xiangchang He, Chencun Huang, Weihe He, Hongqing Zhao, Jie Dai, Guangming Xu\",\"doi\":\"10.1002/pca.3346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Polygonum amplexicaule D. Don var. sinense Forb (PAF), a medicinal plant, has the effect of promoting blood circulation and removing blood stasis. However, the active compounds and targets of its anticoagulant effect are still unclear.</p><p><strong>Objectives: </strong>This study aims to establish an effective reversely thrombin-targeted screening method for anticoagulant active components in PAF by affinity ultrafiltration (AUF) coupled with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-Q-TOF-MS).</p><p><strong>Methods: </strong>Different polar parts of PAF were screened for potential thrombin ligands by AUF-HPLC and identified by UPLC-Q-TOF-MS. After studying the affinity between ligands and thrombin by molecular docking, the antithrombotic activity of ligands was detected in vivo by zebrafish thrombus model, and in vitro by chromogenic substrate method. The mechanism of such ligands on thrombin was further studied by coagulation factor assay.</p><p><strong>Results: </strong>Eleven potential thrombin ligands from PAF were screened by the AUF-UPLC-Q-TOF-MS method, and two compounds (butyl gallate and β-sitosterol) with significant anticoagulant activity were discovered via in vitro and in vivo activity testing.</p><p><strong>Conclusion: </strong>A method system based on AUF-UPLC-Q-TOF-MS, molecular docking and in vivo and in vitro experiments also provided a powerful tool for further exploration of anticoagulant active components in PAF.</p>\",\"PeriodicalId\":20095,\"journal\":{\"name\":\"Phytochemical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemical Analysis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pca.3346\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3346","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

简介Polygonum amplexicaule D. Don var. sinense Forb(PAF)是一种药用植物,具有活血化瘀的功效。然而,其抗凝血作用的活性化合物和靶点尚不清楚:本研究旨在通过亲和超滤(AUF)结合超高效液相色谱-四极杆飞行时间质谱(UPLC-Q-TOF-MS)建立一种有效的反向凝血酶靶向筛选 PAF 中抗凝血活性成分的方法:方法:用 AUF-HPLC 筛选 PAF 的不同极性部分,并用 UPLC-Q-TOF-MS 鉴定潜在的凝血酶配体。通过分子对接研究了配体与凝血酶的亲和力,并利用斑马鱼血栓模型和显色底物法检测了配体在体内和体外的抗血栓活性。通过凝血因子测定进一步研究了这些配体对凝血酶的作用机制:结果:利用 AUF-UPLC-Q-TOF-MS 方法从 PAF 中筛选出 11 种潜在的凝血酶配体,并通过体外和体内活性测试发现了两种具有显著抗凝活性的化合物(没食子酸丁酯和β-谷甾醇):结论:基于 AUF-UPLC-Q-TOF-MS、分子对接和体内外实验的方法体系也为进一步探索 PAF 中的抗凝活性成分提供了有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thrombin-targeted screening of anticoagulant active components from Polygonum amplexicaule D. Don var. sinense Forb by affinity ultrafiltration coupled with UPLC-Q-TOF-MS.

Introduction: Polygonum amplexicaule D. Don var. sinense Forb (PAF), a medicinal plant, has the effect of promoting blood circulation and removing blood stasis. However, the active compounds and targets of its anticoagulant effect are still unclear.

Objectives: This study aims to establish an effective reversely thrombin-targeted screening method for anticoagulant active components in PAF by affinity ultrafiltration (AUF) coupled with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-Q-TOF-MS).

Methods: Different polar parts of PAF were screened for potential thrombin ligands by AUF-HPLC and identified by UPLC-Q-TOF-MS. After studying the affinity between ligands and thrombin by molecular docking, the antithrombotic activity of ligands was detected in vivo by zebrafish thrombus model, and in vitro by chromogenic substrate method. The mechanism of such ligands on thrombin was further studied by coagulation factor assay.

Results: Eleven potential thrombin ligands from PAF were screened by the AUF-UPLC-Q-TOF-MS method, and two compounds (butyl gallate and β-sitosterol) with significant anticoagulant activity were discovered via in vitro and in vivo activity testing.

Conclusion: A method system based on AUF-UPLC-Q-TOF-MS, molecular docking and in vivo and in vitro experiments also provided a powerful tool for further exploration of anticoagulant active components in PAF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytochemical Analysis
Phytochemical Analysis 生物-分析化学
CiteScore
6.00
自引率
6.10%
发文量
88
审稿时长
1.7 months
期刊介绍: Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信