Marina Bulat, Stefan Mirković, Nemanja Gazivoda, Dragan Pejić, Marjan Urekar, Boris Antić
{"title":"作为商用测量设备最优解的均方根值估算改进算法","authors":"Marina Bulat, Stefan Mirković, Nemanja Gazivoda, Dragan Pejić, Marjan Urekar, Boris Antić","doi":"10.1016/j.micpro.2024.105042","DOIUrl":null,"url":null,"abstract":"<div><p>This paper demonstrates that direct changes in the algorithm for the estimation of the root mean square value of a voltage signal of an arbitrary waveform can lead to improved performances and lower measurement uncertainty of commercially available instruments without requiring any upgrade of their existing hardware. The research conducted and presented here is an original contribution to the development of estimation techniques and mathematical models for measurement oriented purposes regardless of the number of samples in the given period relying on mathematical calculation of the equal complexity as in the methods already in use. The theoretical approach examines the problem of numerical integration focusing on modified Simpson's 1/3 rule and modified Simpson's 3/8 rule used for the purpose of the estimation of the root mean square value when a small number of samples per period is available. It highlights the limitations of Simpson's 1/3 rule and Simpson's 3/8 rule, and shows that the newly proposed algorithm is optimal with respect to measurement accuracy and precision even in cases when the ratio of the sampling frequency and the signal's fundamental frequency is low. All theoretical results have been validated experimentally.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"106 ","pages":"Article 105042"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved algorithm for the estimation of the root mean square value as an optimal solution for commercial measurement equipment\",\"authors\":\"Marina Bulat, Stefan Mirković, Nemanja Gazivoda, Dragan Pejić, Marjan Urekar, Boris Antić\",\"doi\":\"10.1016/j.micpro.2024.105042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper demonstrates that direct changes in the algorithm for the estimation of the root mean square value of a voltage signal of an arbitrary waveform can lead to improved performances and lower measurement uncertainty of commercially available instruments without requiring any upgrade of their existing hardware. The research conducted and presented here is an original contribution to the development of estimation techniques and mathematical models for measurement oriented purposes regardless of the number of samples in the given period relying on mathematical calculation of the equal complexity as in the methods already in use. The theoretical approach examines the problem of numerical integration focusing on modified Simpson's 1/3 rule and modified Simpson's 3/8 rule used for the purpose of the estimation of the root mean square value when a small number of samples per period is available. It highlights the limitations of Simpson's 1/3 rule and Simpson's 3/8 rule, and shows that the newly proposed algorithm is optimal with respect to measurement accuracy and precision even in cases when the ratio of the sampling frequency and the signal's fundamental frequency is low. All theoretical results have been validated experimentally.</p></div>\",\"PeriodicalId\":49815,\"journal\":{\"name\":\"Microprocessors and Microsystems\",\"volume\":\"106 \",\"pages\":\"Article 105042\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microprocessors and Microsystems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141933124000371\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000371","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
An improved algorithm for the estimation of the root mean square value as an optimal solution for commercial measurement equipment
This paper demonstrates that direct changes in the algorithm for the estimation of the root mean square value of a voltage signal of an arbitrary waveform can lead to improved performances and lower measurement uncertainty of commercially available instruments without requiring any upgrade of their existing hardware. The research conducted and presented here is an original contribution to the development of estimation techniques and mathematical models for measurement oriented purposes regardless of the number of samples in the given period relying on mathematical calculation of the equal complexity as in the methods already in use. The theoretical approach examines the problem of numerical integration focusing on modified Simpson's 1/3 rule and modified Simpson's 3/8 rule used for the purpose of the estimation of the root mean square value when a small number of samples per period is available. It highlights the limitations of Simpson's 1/3 rule and Simpson's 3/8 rule, and shows that the newly proposed algorithm is optimal with respect to measurement accuracy and precision even in cases when the ratio of the sampling frequency and the signal's fundamental frequency is low. All theoretical results have been validated experimentally.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.