Hanqi Li, Alice Fletcher-Etherington, Leah M Hunter, Swati Keshri, Ceri A Fielding, Katie Nightingale, Benjamin Ravenhill, Luis Nobre, Martin Potts, Robin Antrobus, Colin M Crump, David C Rubinsztein, Richard J Stanton, Michael P Weekes
{"title":"人类巨细胞病毒会降解 DMXL1,从而抑制自噬、溶酶体酸化和病毒组装。","authors":"Hanqi Li, Alice Fletcher-Etherington, Leah M Hunter, Swati Keshri, Ceri A Fielding, Katie Nightingale, Benjamin Ravenhill, Luis Nobre, Martin Potts, Robin Antrobus, Colin M Crump, David C Rubinsztein, Richard J Stanton, Michael P Weekes","doi":"10.1016/j.chom.2024.02.013","DOIUrl":null,"url":null,"abstract":"<p><p>Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":" ","pages":"466-478.e11"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human cytomegalovirus degrades DMXL1 to inhibit autophagy, lysosomal acidification, and viral assembly.\",\"authors\":\"Hanqi Li, Alice Fletcher-Etherington, Leah M Hunter, Swati Keshri, Ceri A Fielding, Katie Nightingale, Benjamin Ravenhill, Luis Nobre, Martin Potts, Robin Antrobus, Colin M Crump, David C Rubinsztein, Richard J Stanton, Michael P Weekes\",\"doi\":\"10.1016/j.chom.2024.02.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.</p>\",\"PeriodicalId\":93926,\"journal\":{\"name\":\"Cell host & microbe\",\"volume\":\" \",\"pages\":\"466-478.e11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell host & microbe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chom.2024.02.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chom.2024.02.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Human cytomegalovirus degrades DMXL1 to inhibit autophagy, lysosomal acidification, and viral assembly.
Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.