Iptwins:利用数字双胞胎对注塑生产相关性进行可视化分析

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yuhua Liu, Zhengkai Xiao, Ke Lu, Lixiang Gao, Aibin Huang, Qiuming Du, Qian Wei, Zhiguang Zhou
{"title":"Iptwins:利用数字双胞胎对注塑生产相关性进行可视化分析","authors":"Yuhua Liu, Zhengkai Xiao, Ke Lu, Lixiang Gao, Aibin Huang, Qiuming Du, Qian Wei, Zhiguang Zhou","doi":"10.1007/s12650-024-00971-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>During oil-gas production, appropriate water injection to different production layers can effectively maintain stratum pressure and implement sustainable extraction of petroleum resources. Studying the performance of oil displacement by water is largely significant for researching the distribution of remaining-oil and adjusting the oilfield development plan. Nevertheless, the multidimensional time-varying injection-production data and 3D spatial structures of underground injection-production networks pose special challenges for effective injection-production correlation analysis. Therefore, we propose a digital-twin-driven visualization to explore and simulate the dynamic patterns of injectors and producers. First, digital twins of underground injection-production network are constructed with static 3D geospatial scenes and dynamic injection-production data, providing users with intuitive visual exploration and flexible interaction. Then, we apply the multi-step time-varying Long Short-term Memory (LSTM) model for dynamic analysis and recommendation of injection development. Furthermore, abstract information visualizations are combined with the 3D virtual environment to support the real-time monitoring and dynamic simulation of injection-production process. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system for intelligent injection-production analysis.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\n","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"88 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iptwins: visual analysis of injection-production correlations using digital twins\",\"authors\":\"Yuhua Liu, Zhengkai Xiao, Ke Lu, Lixiang Gao, Aibin Huang, Qiuming Du, Qian Wei, Zhiguang Zhou\",\"doi\":\"10.1007/s12650-024-00971-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>During oil-gas production, appropriate water injection to different production layers can effectively maintain stratum pressure and implement sustainable extraction of petroleum resources. Studying the performance of oil displacement by water is largely significant for researching the distribution of remaining-oil and adjusting the oilfield development plan. Nevertheless, the multidimensional time-varying injection-production data and 3D spatial structures of underground injection-production networks pose special challenges for effective injection-production correlation analysis. Therefore, we propose a digital-twin-driven visualization to explore and simulate the dynamic patterns of injectors and producers. First, digital twins of underground injection-production network are constructed with static 3D geospatial scenes and dynamic injection-production data, providing users with intuitive visual exploration and flexible interaction. Then, we apply the multi-step time-varying Long Short-term Memory (LSTM) model for dynamic analysis and recommendation of injection development. Furthermore, abstract information visualizations are combined with the 3D virtual environment to support the real-time monitoring and dynamic simulation of injection-production process. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system for intelligent injection-production analysis.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphic abstract</h3>\\n\",\"PeriodicalId\":54756,\"journal\":{\"name\":\"Journal of Visualization\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visualization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12650-024-00971-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12650-024-00971-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在油气生产过程中,向不同的生产层适当注水可以有效地保持地层压力,实现石油资源的可持续开采。研究注水驱油性能对研究剩余油分布、调整油田开发方案具有重要意义。然而,地下注采网络的多维时变注采数据和三维空间结构对有效进行注采关联分析提出了特殊挑战。因此,我们提出了一种数字孪生驱动的可视化方法来探索和模拟注采动态模式。首先,利用静态三维地理空间场景和动态注采数据构建地下注采网络数字孪生,为用户提供直观的可视化探索和灵活的交互方式。然后,我们应用多步时变长短期记忆(LSTM)模型对注水开发进行动态分析和推荐。此外,抽象信息可视化与三维虚拟环境相结合,支持注塑生产过程的实时监控和动态模拟。基于真实世界数据集和领域专家访谈的案例研究证明了我们的系统在智能注塑生产分析方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Iptwins: visual analysis of injection-production correlations using digital twins

Iptwins: visual analysis of injection-production correlations using digital twins

Abstract

During oil-gas production, appropriate water injection to different production layers can effectively maintain stratum pressure and implement sustainable extraction of petroleum resources. Studying the performance of oil displacement by water is largely significant for researching the distribution of remaining-oil and adjusting the oilfield development plan. Nevertheless, the multidimensional time-varying injection-production data and 3D spatial structures of underground injection-production networks pose special challenges for effective injection-production correlation analysis. Therefore, we propose a digital-twin-driven visualization to explore and simulate the dynamic patterns of injectors and producers. First, digital twins of underground injection-production network are constructed with static 3D geospatial scenes and dynamic injection-production data, providing users with intuitive visual exploration and flexible interaction. Then, we apply the multi-step time-varying Long Short-term Memory (LSTM) model for dynamic analysis and recommendation of injection development. Furthermore, abstract information visualizations are combined with the 3D virtual environment to support the real-time monitoring and dynamic simulation of injection-production process. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system for intelligent injection-production analysis.

Graphic abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visualization
Journal of Visualization COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.40
自引率
5.90%
发文量
79
审稿时长
>12 weeks
期刊介绍: Visualization is an interdisciplinary imaging science devoted to making the invisible visible through the techniques of experimental visualization and computer-aided visualization. The scope of the Journal is to provide a place to exchange information on the latest visualization technology and its application by the presentation of latest papers of both researchers and technicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信