Guixian Shen, Junyao Wang, Pengli Bai* and Zhiyong Wang*,
{"title":"镧系元素辅助纳米酶在体外诊断中执行光学和磁共振双模态逻辑信号。","authors":"Guixian Shen, Junyao Wang, Pengli Bai* and Zhiyong Wang*, ","doi":"10.1021/acs.analchem.3c05624","DOIUrl":null,"url":null,"abstract":"<p >The iron nanozyme-based colorimetric method, which is widely applied for biosubstrate detection in in vitro diagnosis (IVD), faces some limitations. The optimal catalytic conditions of iron nanozymes necessitate a strong acidic environment, high temperature, and other restrictive factors; additionally, the colorimetric results are highly influenced by optical interferences. To address these challenges, iron nanozymes doped with various transition elements were efficiently prepared in this study, and notably, the manganese-modified one displayed a high catalytic activity owing to its electron transfer property. Furthermore, the introduction of lanthanide ions into the catalytic reactions, specifically the neodymium ion, significantly boosted the generation efficiency of hydroxyl radicals; importantly, this enhancement extended to a wide range of pH levels and temperatures, amplifying the detection signal. Moreover, the nanozyme’s superparamagnetic characteristic was also employed to perform a logical optical and magnetic resonance dual-modality detection for substrates, effectively eliminating background optical interference and ensuring a reliable verification of the signal’s authenticity. Based on this magnetic signal, the integration of natural glucose oxidase with the nanozyme resulted in a notable 61.5% increase in detection sensitivity, surpassing the capabilities of the traditional colorimetric approach. Consequently, the incorporation of lanthanide ions into the magnetic nanozyme enables the effective identification of physiological biomarkers through the dual-modality signal. This not only guarantees enhanced sensitivity but also demonstrates significant potential for future applications.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 11","pages":"4612–4622"},"PeriodicalIF":6.7000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lanthanide-Assisted Nanozyme Performs Optical and Magnetic Resonance Dual-Modality Logical Signal for In Vitro Diagnosis\",\"authors\":\"Guixian Shen, Junyao Wang, Pengli Bai* and Zhiyong Wang*, \",\"doi\":\"10.1021/acs.analchem.3c05624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The iron nanozyme-based colorimetric method, which is widely applied for biosubstrate detection in in vitro diagnosis (IVD), faces some limitations. The optimal catalytic conditions of iron nanozymes necessitate a strong acidic environment, high temperature, and other restrictive factors; additionally, the colorimetric results are highly influenced by optical interferences. To address these challenges, iron nanozymes doped with various transition elements were efficiently prepared in this study, and notably, the manganese-modified one displayed a high catalytic activity owing to its electron transfer property. Furthermore, the introduction of lanthanide ions into the catalytic reactions, specifically the neodymium ion, significantly boosted the generation efficiency of hydroxyl radicals; importantly, this enhancement extended to a wide range of pH levels and temperatures, amplifying the detection signal. Moreover, the nanozyme’s superparamagnetic characteristic was also employed to perform a logical optical and magnetic resonance dual-modality detection for substrates, effectively eliminating background optical interference and ensuring a reliable verification of the signal’s authenticity. Based on this magnetic signal, the integration of natural glucose oxidase with the nanozyme resulted in a notable 61.5% increase in detection sensitivity, surpassing the capabilities of the traditional colorimetric approach. Consequently, the incorporation of lanthanide ions into the magnetic nanozyme enables the effective identification of physiological biomarkers through the dual-modality signal. This not only guarantees enhanced sensitivity but also demonstrates significant potential for future applications.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"96 11\",\"pages\":\"4612–4622\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.3c05624\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.3c05624","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Lanthanide-Assisted Nanozyme Performs Optical and Magnetic Resonance Dual-Modality Logical Signal for In Vitro Diagnosis
The iron nanozyme-based colorimetric method, which is widely applied for biosubstrate detection in in vitro diagnosis (IVD), faces some limitations. The optimal catalytic conditions of iron nanozymes necessitate a strong acidic environment, high temperature, and other restrictive factors; additionally, the colorimetric results are highly influenced by optical interferences. To address these challenges, iron nanozymes doped with various transition elements were efficiently prepared in this study, and notably, the manganese-modified one displayed a high catalytic activity owing to its electron transfer property. Furthermore, the introduction of lanthanide ions into the catalytic reactions, specifically the neodymium ion, significantly boosted the generation efficiency of hydroxyl radicals; importantly, this enhancement extended to a wide range of pH levels and temperatures, amplifying the detection signal. Moreover, the nanozyme’s superparamagnetic characteristic was also employed to perform a logical optical and magnetic resonance dual-modality detection for substrates, effectively eliminating background optical interference and ensuring a reliable verification of the signal’s authenticity. Based on this magnetic signal, the integration of natural glucose oxidase with the nanozyme resulted in a notable 61.5% increase in detection sensitivity, surpassing the capabilities of the traditional colorimetric approach. Consequently, the incorporation of lanthanide ions into the magnetic nanozyme enables the effective identification of physiological biomarkers through the dual-modality signal. This not only guarantees enhanced sensitivity but also demonstrates significant potential for future applications.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.