{"title":"使用设备传感器进行室内定位:对隐私的威胁","authors":"Hitesh Verma , Smita Naval , Balaprakasa Rao Killi , Vinod P.","doi":"10.1016/j.micpro.2024.105041","DOIUrl":null,"url":null,"abstract":"<div><p>The localization techniques used in today’s smartphone are mainly based on Global Positioning System (GPS). However, GPS Sensors cannot work properly under in-door and underground locations. Therefore, many applications utilize device sensors such as accelerometer, gyrometer, and magnetometer for indoor localization. In this paper, we present a misuse case of how device sensors can be used to exploit the privacy of a user by geo-tracking. We propose an attack model through which the user location can be compromised without using the GPS sensors. The proposed attack model comprises of two stages. The first stage consists of deployment of the malicious application on the users’ smart-phones and gathering the information of various sensors in the background. The collected sensor data is uploaded to the malicious cloud server set up by the adversary. The second stage consists of pre-processing the sensor data received from the malicious cloud server and plot the user’s trajectory onto a graph in real-time. The proposed attack model is evaluated by developing two applications. The victim application tracks location, direction, and trajectory of the user without any location permission from the user. The proposed model achieves an accuracy of 98% without using special infrastructure and separate training phase. Further, we have discussed three mitigation schemes, which can be adapted by the Android developers in order to protect the user’s privacy.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"106 ","pages":"Article 105041"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indoor localization using device sensors: A threat to privacy\",\"authors\":\"Hitesh Verma , Smita Naval , Balaprakasa Rao Killi , Vinod P.\",\"doi\":\"10.1016/j.micpro.2024.105041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The localization techniques used in today’s smartphone are mainly based on Global Positioning System (GPS). However, GPS Sensors cannot work properly under in-door and underground locations. Therefore, many applications utilize device sensors such as accelerometer, gyrometer, and magnetometer for indoor localization. In this paper, we present a misuse case of how device sensors can be used to exploit the privacy of a user by geo-tracking. We propose an attack model through which the user location can be compromised without using the GPS sensors. The proposed attack model comprises of two stages. The first stage consists of deployment of the malicious application on the users’ smart-phones and gathering the information of various sensors in the background. The collected sensor data is uploaded to the malicious cloud server set up by the adversary. The second stage consists of pre-processing the sensor data received from the malicious cloud server and plot the user’s trajectory onto a graph in real-time. The proposed attack model is evaluated by developing two applications. The victim application tracks location, direction, and trajectory of the user without any location permission from the user. The proposed model achieves an accuracy of 98% without using special infrastructure and separate training phase. Further, we have discussed three mitigation schemes, which can be adapted by the Android developers in order to protect the user’s privacy.</p></div>\",\"PeriodicalId\":49815,\"journal\":{\"name\":\"Microprocessors and Microsystems\",\"volume\":\"106 \",\"pages\":\"Article 105041\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microprocessors and Microsystems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014193312400036X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014193312400036X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Indoor localization using device sensors: A threat to privacy
The localization techniques used in today’s smartphone are mainly based on Global Positioning System (GPS). However, GPS Sensors cannot work properly under in-door and underground locations. Therefore, many applications utilize device sensors such as accelerometer, gyrometer, and magnetometer for indoor localization. In this paper, we present a misuse case of how device sensors can be used to exploit the privacy of a user by geo-tracking. We propose an attack model through which the user location can be compromised without using the GPS sensors. The proposed attack model comprises of two stages. The first stage consists of deployment of the malicious application on the users’ smart-phones and gathering the information of various sensors in the background. The collected sensor data is uploaded to the malicious cloud server set up by the adversary. The second stage consists of pre-processing the sensor data received from the malicious cloud server and plot the user’s trajectory onto a graph in real-time. The proposed attack model is evaluated by developing two applications. The victim application tracks location, direction, and trajectory of the user without any location permission from the user. The proposed model achieves an accuracy of 98% without using special infrastructure and separate training phase. Further, we have discussed three mitigation schemes, which can be adapted by the Android developers in order to protect the user’s privacy.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.