{"title":"通过体内近距离连接瞄准细胞内神经毒素相互作用组。","authors":"Ming-Han Wang, Yue Hao, Xia-Jing Tong","doi":"10.1016/j.tins.2024.02.007","DOIUrl":null,"url":null,"abstract":"<p><p>In a recent study, Profes, Tiroumalechetty, and colleagues used the in vivo proximity ligation technique TurboID to scrupulously characterize the interactome of the intracellular domain (ICD) of neurexin, revealing that this domain may be involved in presynaptic actin assembly by interacting with actin-associated proteins.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"243-245"},"PeriodicalIF":14.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting the intracellular neurexin interactome by in vivo proximity ligation.\",\"authors\":\"Ming-Han Wang, Yue Hao, Xia-Jing Tong\",\"doi\":\"10.1016/j.tins.2024.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a recent study, Profes, Tiroumalechetty, and colleagues used the in vivo proximity ligation technique TurboID to scrupulously characterize the interactome of the intracellular domain (ICD) of neurexin, revealing that this domain may be involved in presynaptic actin assembly by interacting with actin-associated proteins.</p>\",\"PeriodicalId\":23325,\"journal\":{\"name\":\"Trends in Neurosciences\",\"volume\":\" \",\"pages\":\"243-245\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tins.2024.02.007\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2024.02.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Targeting the intracellular neurexin interactome by in vivo proximity ligation.
In a recent study, Profes, Tiroumalechetty, and colleagues used the in vivo proximity ligation technique TurboID to scrupulously characterize the interactome of the intracellular domain (ICD) of neurexin, revealing that this domain may be involved in presynaptic actin assembly by interacting with actin-associated proteins.
期刊介绍:
For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.