{"title":"基于改进的视觉变换器模型的癫痫发作预测,用于脑电图信道优化。","authors":"Nan Qi, Yan Piao, Hao Zhang, Qi Wang, Yue Wang","doi":"10.1080/10255842.2024.2326097","DOIUrl":null,"url":null,"abstract":"<p><p>Epileptic seizures are unpredictable events caused by abnormal discharges of a patient's brain cells. Extensive research has been conducted to develop seizure prediction algorithms based on long-term continuous electroencephalogram (EEG) signals. This paper describes a patient-specific seizure prediction method that can serve as a basis for the design of lightweight, wearable and effective seizure-prediction devices. We aim to achieve two objectives using this method. The first aim is to extract robust feature representations from multichannel EEG signals, and the second aim is to reduce the number of channels used for prediction by selecting an optimal set of channels from multichannel EEG signals while ensuring good prediction performance. We design a seizure-prediction algorithm based on a vision transformer (ViT) model. The algorithm selects channels that play a key role in seizure prediction from 22 channels of EEG signals. First, we perform a time-frequency analysis of processed time-series signals to obtain EEG spectrograms. We then segment the spectrograms of multiple channels into many non-overlapping patches of the same size, which are input into the channel selection layer of the proposed model, named Sel-JPM-ViT, enabling it to select channels. Application of the Sel-JPM-ViT model to the Boston Children's Hospital-Massachusetts Institute of Technology scalp EEG dataset yields results using only three to six channels of EEG signals that are slightly better that the results obtained using 22 channels of EEG signals. Overall, the Sel-JPM-ViT model exhibits an average classification accuracy of 93.65%, an average sensitivity of 94.70% and an average specificity of 92.78%.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1450-1461"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seizure prediction based on improved vision transformer model for EEG channel optimization.\",\"authors\":\"Nan Qi, Yan Piao, Hao Zhang, Qi Wang, Yue Wang\",\"doi\":\"10.1080/10255842.2024.2326097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epileptic seizures are unpredictable events caused by abnormal discharges of a patient's brain cells. Extensive research has been conducted to develop seizure prediction algorithms based on long-term continuous electroencephalogram (EEG) signals. This paper describes a patient-specific seizure prediction method that can serve as a basis for the design of lightweight, wearable and effective seizure-prediction devices. We aim to achieve two objectives using this method. The first aim is to extract robust feature representations from multichannel EEG signals, and the second aim is to reduce the number of channels used for prediction by selecting an optimal set of channels from multichannel EEG signals while ensuring good prediction performance. We design a seizure-prediction algorithm based on a vision transformer (ViT) model. The algorithm selects channels that play a key role in seizure prediction from 22 channels of EEG signals. First, we perform a time-frequency analysis of processed time-series signals to obtain EEG spectrograms. We then segment the spectrograms of multiple channels into many non-overlapping patches of the same size, which are input into the channel selection layer of the proposed model, named Sel-JPM-ViT, enabling it to select channels. Application of the Sel-JPM-ViT model to the Boston Children's Hospital-Massachusetts Institute of Technology scalp EEG dataset yields results using only three to six channels of EEG signals that are slightly better that the results obtained using 22 channels of EEG signals. Overall, the Sel-JPM-ViT model exhibits an average classification accuracy of 93.65%, an average sensitivity of 94.70% and an average specificity of 92.78%.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1450-1461\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2024.2326097\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2326097","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Seizure prediction based on improved vision transformer model for EEG channel optimization.
Epileptic seizures are unpredictable events caused by abnormal discharges of a patient's brain cells. Extensive research has been conducted to develop seizure prediction algorithms based on long-term continuous electroencephalogram (EEG) signals. This paper describes a patient-specific seizure prediction method that can serve as a basis for the design of lightweight, wearable and effective seizure-prediction devices. We aim to achieve two objectives using this method. The first aim is to extract robust feature representations from multichannel EEG signals, and the second aim is to reduce the number of channels used for prediction by selecting an optimal set of channels from multichannel EEG signals while ensuring good prediction performance. We design a seizure-prediction algorithm based on a vision transformer (ViT) model. The algorithm selects channels that play a key role in seizure prediction from 22 channels of EEG signals. First, we perform a time-frequency analysis of processed time-series signals to obtain EEG spectrograms. We then segment the spectrograms of multiple channels into many non-overlapping patches of the same size, which are input into the channel selection layer of the proposed model, named Sel-JPM-ViT, enabling it to select channels. Application of the Sel-JPM-ViT model to the Boston Children's Hospital-Massachusetts Institute of Technology scalp EEG dataset yields results using only three to six channels of EEG signals that are slightly better that the results obtained using 22 channels of EEG signals. Overall, the Sel-JPM-ViT model exhibits an average classification accuracy of 93.65%, an average sensitivity of 94.70% and an average specificity of 92.78%.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.