用于光网络的基于环形光子晶体的可重构多功能纳米对称谐振器的数值分析

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Pradeep Doss M;R. K. Jeyachitra
{"title":"用于光网络的基于环形光子晶体的可重构多功能纳米对称谐振器的数值分析","authors":"Pradeep Doss M;R. K. Jeyachitra","doi":"10.1109/TNANO.2024.3373013","DOIUrl":null,"url":null,"abstract":"Annular photonic crystal-based coupled nano ring resonator for the multifunctional platform with ultra-compact in size for high-performance optical network components. The proposed structure is reconfigurable and symmetrical, providing large bandwidth, high extinction ratio, and a very low loss comprising dual ring resonators and annular photonic crystal ring is made of Silica (Si) filled with Magnesium Fluoride (MgF\n<sub>2</sub>\n) dielectric material. The photonic crystal resonator structure comprehends several high-performance optical network applications like optical filters, 1 × 2 and 1 × 3 power splitters, and reconfigurable switches. The miniature optical device parameters and their performances are optimized and analyzed by using Finite Difference Time Domain (FDTD) method. Annular photonic crystal-based ring resonators are coupled with the planar waveguide structure with a small footprint of 136.5 μm\n<sup>2</sup>\n with a high data rate of 7.81 Tbps. The proposed design is suitable for quantum computing, optical interconnects, and optical network devices.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"223-230"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of Annular Photonic Crystal Based Reconfigurable and Multifunctional Nanoring Symmetrical Resonator for Optical Networks\",\"authors\":\"Pradeep Doss M;R. K. Jeyachitra\",\"doi\":\"10.1109/TNANO.2024.3373013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Annular photonic crystal-based coupled nano ring resonator for the multifunctional platform with ultra-compact in size for high-performance optical network components. The proposed structure is reconfigurable and symmetrical, providing large bandwidth, high extinction ratio, and a very low loss comprising dual ring resonators and annular photonic crystal ring is made of Silica (Si) filled with Magnesium Fluoride (MgF\\n<sub>2</sub>\\n) dielectric material. The photonic crystal resonator structure comprehends several high-performance optical network applications like optical filters, 1 × 2 and 1 × 3 power splitters, and reconfigurable switches. The miniature optical device parameters and their performances are optimized and analyzed by using Finite Difference Time Domain (FDTD) method. Annular photonic crystal-based ring resonators are coupled with the planar waveguide structure with a small footprint of 136.5 μm\\n<sup>2</sup>\\n with a high data rate of 7.81 Tbps. The proposed design is suitable for quantum computing, optical interconnects, and optical network devices.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"223-230\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10460076/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10460076/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于环形光子晶体的耦合纳米环形谐振器是一种多功能平台,具有超小型尺寸,适用于高性能光网络组件。所提出的结构具有可重构性和对称性,可提供大带宽、高消光比和极低损耗,由双环谐振器和环形光子晶体环组成,环形光子晶体环由二氧化硅(Si)和氟化镁(MgF2)介电材料填充而成。该光子晶体谐振器结构包含多种高性能光网络应用,如光滤波器、1 × 2 和 1 × 3 功率分配器以及可重构开关。采用有限差分时域(FDTD)方法对微型光学器件参数及其性能进行了优化和分析。基于环形光子晶体的环形谐振器与平面波导结构耦合,占地面积仅为 136.5 μm2,数据传输率高达 7.81 Tbps。所提出的设计适用于量子计算、光互连和光网络设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Analysis of Annular Photonic Crystal Based Reconfigurable and Multifunctional Nanoring Symmetrical Resonator for Optical Networks
Annular photonic crystal-based coupled nano ring resonator for the multifunctional platform with ultra-compact in size for high-performance optical network components. The proposed structure is reconfigurable and symmetrical, providing large bandwidth, high extinction ratio, and a very low loss comprising dual ring resonators and annular photonic crystal ring is made of Silica (Si) filled with Magnesium Fluoride (MgF 2 ) dielectric material. The photonic crystal resonator structure comprehends several high-performance optical network applications like optical filters, 1 × 2 and 1 × 3 power splitters, and reconfigurable switches. The miniature optical device parameters and their performances are optimized and analyzed by using Finite Difference Time Domain (FDTD) method. Annular photonic crystal-based ring resonators are coupled with the planar waveguide structure with a small footprint of 136.5 μm 2 with a high data rate of 7.81 Tbps. The proposed design is suitable for quantum computing, optical interconnects, and optical network devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信