{"title":"脂质载体纳米结构阿斯替滨通过调节 GSK3β-Nrf2 信号通路改善罗替农诱导的小鼠脑神经退行性变","authors":"Wenyuan Xu, You Dai","doi":"10.5650/jos.ess23173","DOIUrl":null,"url":null,"abstract":"</p><p>Astilbin is a flavanonol, found in St John’s wort (<i>Hypericum perforatum</i>) and many other plants. It has been demonstrated that astilbin contains anti-inflammatory, antioxidant, and immune-suppressive properties. However, the bioavailability of astilbin remains a question for which drug delivery-based nanoparticles can be utilized. We formulated a nanostructured lipid carrier loaded with astilbin (NLC-AS) and tested its effects on the rotenone exposed PC12 cells and in a neurodegenerative mice model of Parkinson’s disease (PD) induced by rotenone. Results show that rotenone caused dose-dependent inhibition of PC12 cell growth with about 50% cell death at 2 µM rotenone. Rotenone caused apoptosis in PC12 cells which was reduced to a notable level by NLC-AS through suppression of oxidative stress, especially via elevation of GSH and total antioxidant capacity, and inhibition of monoamine oxidase. Rotenone significantly augmented neurodegeneration in mouse brains by triggering apoptosis and oxidative damage, while NLC-AS treatment halted these processes. Rotenone-exposed mice showed neuronal deficits and impaired neurocognitive functions like loss of memory and learning restrictions which were restored to a remarkable level by NLC-AS administration. The protective effect of NLC-AS was mediated through the inhibition of GSK3β and induction of Nrf2 genes in the brain tissues. These findings suggest that NLC-AS administration may efficiently regulate the signs of PD in mice and prevent neurodegeneration and neurocognitive dysfunctions.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jos/73/3/73_ess23173/figure/73_ess23173.jpg\"/>\ngraphical abstract <span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16626,"journal":{"name":"Journal of oleo science","volume":"8 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid Carrier Nanostructured Astilbin Ameliorates Rotenone-Induced Neurodegeneration in Mice Brain via Modulation of GSK3β-Nrf2 Signaling Pathways\",\"authors\":\"Wenyuan Xu, You Dai\",\"doi\":\"10.5650/jos.ess23173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>Astilbin is a flavanonol, found in St John’s wort (<i>Hypericum perforatum</i>) and many other plants. It has been demonstrated that astilbin contains anti-inflammatory, antioxidant, and immune-suppressive properties. However, the bioavailability of astilbin remains a question for which drug delivery-based nanoparticles can be utilized. We formulated a nanostructured lipid carrier loaded with astilbin (NLC-AS) and tested its effects on the rotenone exposed PC12 cells and in a neurodegenerative mice model of Parkinson’s disease (PD) induced by rotenone. Results show that rotenone caused dose-dependent inhibition of PC12 cell growth with about 50% cell death at 2 µM rotenone. Rotenone caused apoptosis in PC12 cells which was reduced to a notable level by NLC-AS through suppression of oxidative stress, especially via elevation of GSH and total antioxidant capacity, and inhibition of monoamine oxidase. Rotenone significantly augmented neurodegeneration in mouse brains by triggering apoptosis and oxidative damage, while NLC-AS treatment halted these processes. Rotenone-exposed mice showed neuronal deficits and impaired neurocognitive functions like loss of memory and learning restrictions which were restored to a remarkable level by NLC-AS administration. The protective effect of NLC-AS was mediated through the inhibition of GSK3β and induction of Nrf2 genes in the brain tissues. These findings suggest that NLC-AS administration may efficiently regulate the signs of PD in mice and prevent neurodegeneration and neurocognitive dysfunctions.</p>\\n<p></p>\\n<img alt=\\\"\\\" src=\\\"https://www.jstage.jst.go.jp/pub/jos/73/3/73_ess23173/figure/73_ess23173.jpg\\\"/>\\ngraphical abstract <span style=\\\"padding-left:5px;\\\">Fullsize Image</span>\",\"PeriodicalId\":16626,\"journal\":{\"name\":\"Journal of oleo science\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of oleo science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5650/jos.ess23173\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oleo science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5650/jos.ess23173","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Lipid Carrier Nanostructured Astilbin Ameliorates Rotenone-Induced Neurodegeneration in Mice Brain via Modulation of GSK3β-Nrf2 Signaling Pathways
Astilbin is a flavanonol, found in St John’s wort (Hypericum perforatum) and many other plants. It has been demonstrated that astilbin contains anti-inflammatory, antioxidant, and immune-suppressive properties. However, the bioavailability of astilbin remains a question for which drug delivery-based nanoparticles can be utilized. We formulated a nanostructured lipid carrier loaded with astilbin (NLC-AS) and tested its effects on the rotenone exposed PC12 cells and in a neurodegenerative mice model of Parkinson’s disease (PD) induced by rotenone. Results show that rotenone caused dose-dependent inhibition of PC12 cell growth with about 50% cell death at 2 µM rotenone. Rotenone caused apoptosis in PC12 cells which was reduced to a notable level by NLC-AS through suppression of oxidative stress, especially via elevation of GSH and total antioxidant capacity, and inhibition of monoamine oxidase. Rotenone significantly augmented neurodegeneration in mouse brains by triggering apoptosis and oxidative damage, while NLC-AS treatment halted these processes. Rotenone-exposed mice showed neuronal deficits and impaired neurocognitive functions like loss of memory and learning restrictions which were restored to a remarkable level by NLC-AS administration. The protective effect of NLC-AS was mediated through the inhibition of GSK3β and induction of Nrf2 genes in the brain tissues. These findings suggest that NLC-AS administration may efficiently regulate the signs of PD in mice and prevent neurodegeneration and neurocognitive dysfunctions.
期刊介绍:
The J. Oleo Sci. publishes original researches of high quality on chemistry, biochemistry and science of fats and oils
such as related food products, detergents, natural products,
petroleum products, lipids and related proteins and sugars.
The Journal also encourages papers on chemistry and/or biochemistry as a major component combined with biological/
sensory/nutritional/toxicological evaluation related to agriculture and/or food.