{"title":"同时具有高壁插效率和高调制带宽的铝梯度对铝镓氮层深紫外发光二极管","authors":"Bingyue Cui, Jie Yang, Xingfa Gao, Jiaheng He, Zhe Liu, Zhe Cheng, Yun Zhang","doi":"10.1088/1361-6641/ad238b","DOIUrl":null,"url":null,"abstract":"This work demonstrated a deep-ultraviolet (DUV) LED with an Al-graded p-AlGaN contact layer above the electron blocking layer to alleviate p-type contact resistance, the asymmetry of carriers transport, and the polarization effect. The fitting results from the ABC + f(n) model revealed that the LED has a higher radiative recombination coefficient than the conventional structures ever reported, which contributes to a lower carrier lifetime. The light output power of the LED at 350 mA is 44.71 mW, the peak external quantum efficiency (EQE) at 22.5 mA is 5.12%, the wall-plug efficiency at 9 mA is 4.40%. The 3 dB electrical-to-optical modulation bandwidth of the graded p-AlGaN contact layer LED is 390 MHz after impedance matching. In short, this study provides an in-depth analysis of the physical mechanism of the enhanced EQE and decreased carrier lifetime of DUV LEDs with Al-graded AlGaN as a p-type contact layer.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-ultraviolet LEDs with an Al-graded p-AlGaN layer exhibiting high wall-plug efficiency and high modulation bandwidth simultaneously\",\"authors\":\"Bingyue Cui, Jie Yang, Xingfa Gao, Jiaheng He, Zhe Liu, Zhe Cheng, Yun Zhang\",\"doi\":\"10.1088/1361-6641/ad238b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrated a deep-ultraviolet (DUV) LED with an Al-graded p-AlGaN contact layer above the electron blocking layer to alleviate p-type contact resistance, the asymmetry of carriers transport, and the polarization effect. The fitting results from the ABC + f(n) model revealed that the LED has a higher radiative recombination coefficient than the conventional structures ever reported, which contributes to a lower carrier lifetime. The light output power of the LED at 350 mA is 44.71 mW, the peak external quantum efficiency (EQE) at 22.5 mA is 5.12%, the wall-plug efficiency at 9 mA is 4.40%. The 3 dB electrical-to-optical modulation bandwidth of the graded p-AlGaN contact layer LED is 390 MHz after impedance matching. In short, this study provides an in-depth analysis of the physical mechanism of the enhanced EQE and decreased carrier lifetime of DUV LEDs with Al-graded AlGaN as a p-type contact layer.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad238b\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad238b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
这项研究展示了一种深紫外(DUV)发光二极管,该发光二极管在电子阻挡层上方采用了铝级p-AlGaN接触层,以减轻p型接触电阻、载流子传输的不对称性和极化效应。ABC + f(n) 模型的拟合结果表明,该 LED 的辐射重组系数比以往报道的传统结构更高,从而导致载流子寿命更短。该 LED 在 350 mA 时的光输出功率为 44.71 mW,22.5 mA 时的峰值外部量子效率 (EQE) 为 5.12%,9 mA 时的壁插效率为 4.40%。阻抗匹配后,渐变 pAlGaN 接触层 LED 的 3 dB 电-光调制带宽为 390 MHz。总之,本研究深入分析了采用铝分级 AlGaN 作为 p 型接触层的 DUV LED 的 EQE 增强和载流子寿命降低的物理机制。
Deep-ultraviolet LEDs with an Al-graded p-AlGaN layer exhibiting high wall-plug efficiency and high modulation bandwidth simultaneously
This work demonstrated a deep-ultraviolet (DUV) LED with an Al-graded p-AlGaN contact layer above the electron blocking layer to alleviate p-type contact resistance, the asymmetry of carriers transport, and the polarization effect. The fitting results from the ABC + f(n) model revealed that the LED has a higher radiative recombination coefficient than the conventional structures ever reported, which contributes to a lower carrier lifetime. The light output power of the LED at 350 mA is 44.71 mW, the peak external quantum efficiency (EQE) at 22.5 mA is 5.12%, the wall-plug efficiency at 9 mA is 4.40%. The 3 dB electrical-to-optical modulation bandwidth of the graded p-AlGaN contact layer LED is 390 MHz after impedance matching. In short, this study provides an in-depth analysis of the physical mechanism of the enhanced EQE and decreased carrier lifetime of DUV LEDs with Al-graded AlGaN as a p-type contact layer.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.