Oluyimika Y. Famuyide , John Lubaale , Cheikh Ndiaye , Kwaku G. Duodu , John R.N. Taylor
{"title":"挤压蒸煮与食物间强化相结合对非洲型珍珠小米粥矿物质生物可及性的影响","authors":"Oluyimika Y. Famuyide , John Lubaale , Cheikh Ndiaye , Kwaku G. Duodu , John R.N. Taylor","doi":"10.1016/j.nfs.2024.100165","DOIUrl":null,"url":null,"abstract":"<div><p>Mineral deficiencies, especially iron and zinc, are still prevalent in urban as well as rural communities among women and children across Africa, including the Sahel. Here, effects of extrusion cooking in combination with food-to-food fortification (FtFF) with plant foods rich in minerals (moringa leaf powder) and their bioavailability enhancers, organic acids (baobab fruit) and β-carotene (carrots, mango, papaya) and additionally micronutrient premix fortification on iron, zinc and other mineral bioaccessibilities in wholegrain pearl millet-based porridges in comparison to their conventionally wet-cooked equivalents were investigated. Percentage bioaccessible iron in extrusion-cooked porridges FtFF with moringa+baobab+carrots+mango, baobab+carrots+papaya and together with micronutrient premix was generally similar to their conventionally cooked FtFF-porridge equivalents. However, the amount of bioaccessible iron in the extrusion-cooked FtFF-porridges was some three times higher. Iron contamination through solubilization from the extruder parts was responsible. Percentage and amount of bioaccessible zinc of the extrusion-cooked FtFF-porridges was substantially increased. This is likely due to phytate degradation during extrusion cooking, thereby reducing the phytate's mineral-chelating effects. Concerning calcium and magnesium, there was no positive effect of extrusion cooking on their bioaccessibility when compared to conventional cooking. However, FtFF substantially increased the amount of bioaccessible calcium and magnesium in the conventionally- and extrusion-cooked FtFF-porridges because of their high contents in moringa and baobab. Consumption of extrusion-cooked ready-to-eat FtFF-porridges, especially when additionally conventionally fortified, is promising to significantly improve bioaccessible iron and zinc in the diet of at-risk African populations, particularly in urban communities.</p></div>","PeriodicalId":19294,"journal":{"name":"NFS Journal","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235236462400004X/pdfft?md5=a9c3a684ce6035188725cdc355db8cb1&pid=1-s2.0-S235236462400004X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of extrusion cooking in combination with food-to-food fortification on the mineral bioaccessibility of African-type pearl millet-based porridge\",\"authors\":\"Oluyimika Y. Famuyide , John Lubaale , Cheikh Ndiaye , Kwaku G. Duodu , John R.N. Taylor\",\"doi\":\"10.1016/j.nfs.2024.100165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mineral deficiencies, especially iron and zinc, are still prevalent in urban as well as rural communities among women and children across Africa, including the Sahel. Here, effects of extrusion cooking in combination with food-to-food fortification (FtFF) with plant foods rich in minerals (moringa leaf powder) and their bioavailability enhancers, organic acids (baobab fruit) and β-carotene (carrots, mango, papaya) and additionally micronutrient premix fortification on iron, zinc and other mineral bioaccessibilities in wholegrain pearl millet-based porridges in comparison to their conventionally wet-cooked equivalents were investigated. Percentage bioaccessible iron in extrusion-cooked porridges FtFF with moringa+baobab+carrots+mango, baobab+carrots+papaya and together with micronutrient premix was generally similar to their conventionally cooked FtFF-porridge equivalents. However, the amount of bioaccessible iron in the extrusion-cooked FtFF-porridges was some three times higher. Iron contamination through solubilization from the extruder parts was responsible. Percentage and amount of bioaccessible zinc of the extrusion-cooked FtFF-porridges was substantially increased. This is likely due to phytate degradation during extrusion cooking, thereby reducing the phytate's mineral-chelating effects. Concerning calcium and magnesium, there was no positive effect of extrusion cooking on their bioaccessibility when compared to conventional cooking. However, FtFF substantially increased the amount of bioaccessible calcium and magnesium in the conventionally- and extrusion-cooked FtFF-porridges because of their high contents in moringa and baobab. Consumption of extrusion-cooked ready-to-eat FtFF-porridges, especially when additionally conventionally fortified, is promising to significantly improve bioaccessible iron and zinc in the diet of at-risk African populations, particularly in urban communities.</p></div>\",\"PeriodicalId\":19294,\"journal\":{\"name\":\"NFS Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S235236462400004X/pdfft?md5=a9c3a684ce6035188725cdc355db8cb1&pid=1-s2.0-S235236462400004X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NFS Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235236462400004X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NFS Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235236462400004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Effect of extrusion cooking in combination with food-to-food fortification on the mineral bioaccessibility of African-type pearl millet-based porridge
Mineral deficiencies, especially iron and zinc, are still prevalent in urban as well as rural communities among women and children across Africa, including the Sahel. Here, effects of extrusion cooking in combination with food-to-food fortification (FtFF) with plant foods rich in minerals (moringa leaf powder) and their bioavailability enhancers, organic acids (baobab fruit) and β-carotene (carrots, mango, papaya) and additionally micronutrient premix fortification on iron, zinc and other mineral bioaccessibilities in wholegrain pearl millet-based porridges in comparison to their conventionally wet-cooked equivalents were investigated. Percentage bioaccessible iron in extrusion-cooked porridges FtFF with moringa+baobab+carrots+mango, baobab+carrots+papaya and together with micronutrient premix was generally similar to their conventionally cooked FtFF-porridge equivalents. However, the amount of bioaccessible iron in the extrusion-cooked FtFF-porridges was some three times higher. Iron contamination through solubilization from the extruder parts was responsible. Percentage and amount of bioaccessible zinc of the extrusion-cooked FtFF-porridges was substantially increased. This is likely due to phytate degradation during extrusion cooking, thereby reducing the phytate's mineral-chelating effects. Concerning calcium and magnesium, there was no positive effect of extrusion cooking on their bioaccessibility when compared to conventional cooking. However, FtFF substantially increased the amount of bioaccessible calcium and magnesium in the conventionally- and extrusion-cooked FtFF-porridges because of their high contents in moringa and baobab. Consumption of extrusion-cooked ready-to-eat FtFF-porridges, especially when additionally conventionally fortified, is promising to significantly improve bioaccessible iron and zinc in the diet of at-risk African populations, particularly in urban communities.
NFS JournalAgricultural and Biological Sciences-Food Science
CiteScore
11.10
自引率
0.00%
发文量
18
审稿时长
29 days
期刊介绍:
The NFS Journal publishes high-quality original research articles and methods papers presenting cutting-edge scientific advances as well as review articles on current topics in all areas of nutrition and food science. The journal particularly invites submission of articles that deal with subjects on the interface of nutrition and food research and thus connect both disciplines. The journal offers a new form of submission Registered Reports (see below). NFS Journal is a forum for research in the following areas: • Understanding the role of dietary factors (macronutrients and micronutrients, phytochemicals, bioactive lipids and peptides etc.) in disease prevention and maintenance of optimum health • Prevention of diet- and age-related pathologies by nutritional approaches • Advances in food technology and food formulation (e.g. novel strategies to reduce salt, sugar, or trans-fat contents etc.) • Nutrition and food genomics, transcriptomics, proteomics, and metabolomics • Identification and characterization of food components • Dietary sources and intake of nutrients and bioactive compounds • Food authentication and quality • Nanotechnology in nutritional and food sciences • (Bio-) Functional properties of foods • Development and validation of novel analytical and research methods • Age- and gender-differences in biological activities and the bioavailability of vitamins, minerals, and phytochemicals and other dietary factors • Food safety and toxicology • Food and nutrition security • Sustainability of food production