用于半导体制造的曲线标准单元设计

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ryoung-Han Kim;Soobin Hwang;Apoorva Oak;Yasser Shirazi;Hsinlan Chang;Kiho Yang;Gioele Mirabelli
{"title":"用于半导体制造的曲线标准单元设计","authors":"Ryoung-Han Kim;Soobin Hwang;Apoorva Oak;Yasser Shirazi;Hsinlan Chang;Kiho Yang;Gioele Mirabelli","doi":"10.1109/TSM.2024.3362900","DOIUrl":null,"url":null,"abstract":"Curvilinear design was applied to standard cell layout to improve electrical characteristics and reduce manufacturing costs. Its implementation was intelligently co-optimized with 1-D Manhattan shapes and photolithography process to preserve the standard cell area equivalent to that of 1-D Manhattan-only designs. B-spline curve representation was employed to realize the curvilinear design. Curvilinear pathfinding was carried out through the Voronoi diagram to find the optimum routing path, and the A* routing algorithm to determine the shortest path. In the curvilinear-designed standard cells, the majority of standard cells exhibited reduced total metal length, decreased number of vias, and eliminated the need for an extra metal layer when compared to 1-D Manhattan-only standard cell designs. Manufacturability of curvilinear designs was evaluated, and potential solutions are proposed in the context of design rule, design rules check (DRC) and optical proximity correction (OPC). DRC and OPC were carried out within the currently employed electronic design automation (EDA) tools to verify the curvilinear designs.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 2","pages":"152-159"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvilinear Standard Cell Design for Semiconductor Manufacturing\",\"authors\":\"Ryoung-Han Kim;Soobin Hwang;Apoorva Oak;Yasser Shirazi;Hsinlan Chang;Kiho Yang;Gioele Mirabelli\",\"doi\":\"10.1109/TSM.2024.3362900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Curvilinear design was applied to standard cell layout to improve electrical characteristics and reduce manufacturing costs. Its implementation was intelligently co-optimized with 1-D Manhattan shapes and photolithography process to preserve the standard cell area equivalent to that of 1-D Manhattan-only designs. B-spline curve representation was employed to realize the curvilinear design. Curvilinear pathfinding was carried out through the Voronoi diagram to find the optimum routing path, and the A* routing algorithm to determine the shortest path. In the curvilinear-designed standard cells, the majority of standard cells exhibited reduced total metal length, decreased number of vias, and eliminated the need for an extra metal layer when compared to 1-D Manhattan-only standard cell designs. Manufacturability of curvilinear designs was evaluated, and potential solutions are proposed in the context of design rule, design rules check (DRC) and optical proximity correction (OPC). DRC and OPC were carried out within the currently employed electronic design automation (EDA) tools to verify the curvilinear designs.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"37 2\",\"pages\":\"152-159\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10423300/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10423300/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

曲线设计应用于标准单元布局,以改善电气特性并降低制造成本。该设计的实施与一维曼哈顿形状和光刻工艺进行了智能优化,从而使标准单元面积与纯一维曼哈顿设计的面积相当。采用 B-样条曲线表示法实现曲线设计。曲线寻路通过 Voronoi 图找到最佳路由路径,并通过 A* 路由算法确定最短路径。在曲线设计的标准单元中,与纯一维曼哈顿标准单元设计相比,大多数标准单元的金属总长度缩短,通孔数量减少,并且无需额外的金属层。对曲线设计的可制造性进行了评估,并结合设计规则、设计规则检查(DRC)和光学邻近校正(OPC)提出了潜在的解决方案。在目前使用的电子设计自动化(EDA)工具中进行了 DRC 和 OPC,以验证曲线设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curvilinear Standard Cell Design for Semiconductor Manufacturing
Curvilinear design was applied to standard cell layout to improve electrical characteristics and reduce manufacturing costs. Its implementation was intelligently co-optimized with 1-D Manhattan shapes and photolithography process to preserve the standard cell area equivalent to that of 1-D Manhattan-only designs. B-spline curve representation was employed to realize the curvilinear design. Curvilinear pathfinding was carried out through the Voronoi diagram to find the optimum routing path, and the A* routing algorithm to determine the shortest path. In the curvilinear-designed standard cells, the majority of standard cells exhibited reduced total metal length, decreased number of vias, and eliminated the need for an extra metal layer when compared to 1-D Manhattan-only standard cell designs. Manufacturability of curvilinear designs was evaluated, and potential solutions are proposed in the context of design rule, design rules check (DRC) and optical proximity correction (OPC). DRC and OPC were carried out within the currently employed electronic design automation (EDA) tools to verify the curvilinear designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信