利用 CT 图像模拟副鼻窦诊断伪影的机器学习框架。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Abdullah Musleh
{"title":"利用 CT 图像模拟副鼻窦诊断伪影的机器学习框架。","authors":"Abdullah Musleh","doi":"10.3233/XST-230284","DOIUrl":null,"url":null,"abstract":"<p><p>In the medical field, diagnostic tools that make use of deep neural networks have reached a level of performance never before seen. A proper diagnosis of a patient's condition is crucial in modern medicine since it determines whether or not the patient will receive the care they need. Data from a sinus CT scan is uploaded to a computer and displayed on a high-definition monitor to give the surgeon a clear anatomical orientation before endoscopic sinus surgery. In this study, a unique method is presented for detecting and diagnosing paranasal sinus disorders using machine learning. The researchers behind the current study designed their own approach. To speed up diagnosis, one of the primary goals of our study is to create an algorithm that can accurately evaluate the paranasal sinuses in CT scans. The proposed technology makes it feasible to automatically cut down on the number of CT scan images that require investigators to manually search through them all. In addition, the approach offers an automatic segmentation that may be used to locate the paranasal sinus region and crop it accordingly. As a result, the suggested method dramatically reduces the amount of data that is necessary during the training phase. As a result, this results in an increase in the efficiency of the computer while retaining a high degree of performance accuracy. The suggested method not only successfully identifies sinus irregularities but also automatically executes the necessary segmentation without requiring any manual cropping. This eliminates the need for time-consuming and error-prone human labor. When tested with actual CT scans, the method in question was discovered to have an accuracy of 95.16 percent while retaining a sensitivity of 99.14 percent throughout.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning framework for simulation of artifacts in paranasal sinuses diagnosis using CT images.\",\"authors\":\"Abdullah Musleh\",\"doi\":\"10.3233/XST-230284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the medical field, diagnostic tools that make use of deep neural networks have reached a level of performance never before seen. A proper diagnosis of a patient's condition is crucial in modern medicine since it determines whether or not the patient will receive the care they need. Data from a sinus CT scan is uploaded to a computer and displayed on a high-definition monitor to give the surgeon a clear anatomical orientation before endoscopic sinus surgery. In this study, a unique method is presented for detecting and diagnosing paranasal sinus disorders using machine learning. The researchers behind the current study designed their own approach. To speed up diagnosis, one of the primary goals of our study is to create an algorithm that can accurately evaluate the paranasal sinuses in CT scans. The proposed technology makes it feasible to automatically cut down on the number of CT scan images that require investigators to manually search through them all. In addition, the approach offers an automatic segmentation that may be used to locate the paranasal sinus region and crop it accordingly. As a result, the suggested method dramatically reduces the amount of data that is necessary during the training phase. As a result, this results in an increase in the efficiency of the computer while retaining a high degree of performance accuracy. The suggested method not only successfully identifies sinus irregularities but also automatically executes the necessary segmentation without requiring any manual cropping. This eliminates the need for time-consuming and error-prone human labor. When tested with actual CT scans, the method in question was discovered to have an accuracy of 95.16 percent while retaining a sensitivity of 99.14 percent throughout.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/XST-230284\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230284","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在医疗领域,利用深度神经网络的诊断工具已经达到了前所未有的性能水平。对病人病情的正确诊断在现代医学中至关重要,因为它决定了病人是否能得到所需的治疗。在内窥镜鼻窦手术前,鼻窦 CT 扫描的数据会被上传到计算机并显示在高清显示器上,为外科医生提供清晰的解剖定位。本研究提出了一种利用机器学习检测和诊断副鼻窦疾病的独特方法。本研究背后的研究人员设计了自己的方法。为了加快诊断速度,我们研究的主要目标之一是创建一种能够准确评估 CT 扫描中副鼻窦的算法。所提出的技术可以自动减少 CT 扫描图像的数量,而这需要研究人员手动搜索所有图像。此外,该方法还提供自动分割功能,可用于定位副鼻窦区域并进行相应裁剪。因此,建议的方法大大减少了训练阶段所需的数据量。因此,在保持高精度性能的同时,也提高了计算机的工作效率。建议的方法不仅能成功识别窦性不规则,还能自动执行必要的分割,无需任何手动裁剪。这样就无需耗时且容易出错的人工操作。在使用实际 CT 扫描进行测试时,发现该方法的准确率达到 95.16%,灵敏度则始终保持在 99.14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning framework for simulation of artifacts in paranasal sinuses diagnosis using CT images.

In the medical field, diagnostic tools that make use of deep neural networks have reached a level of performance never before seen. A proper diagnosis of a patient's condition is crucial in modern medicine since it determines whether or not the patient will receive the care they need. Data from a sinus CT scan is uploaded to a computer and displayed on a high-definition monitor to give the surgeon a clear anatomical orientation before endoscopic sinus surgery. In this study, a unique method is presented for detecting and diagnosing paranasal sinus disorders using machine learning. The researchers behind the current study designed their own approach. To speed up diagnosis, one of the primary goals of our study is to create an algorithm that can accurately evaluate the paranasal sinuses in CT scans. The proposed technology makes it feasible to automatically cut down on the number of CT scan images that require investigators to manually search through them all. In addition, the approach offers an automatic segmentation that may be used to locate the paranasal sinus region and crop it accordingly. As a result, the suggested method dramatically reduces the amount of data that is necessary during the training phase. As a result, this results in an increase in the efficiency of the computer while retaining a high degree of performance accuracy. The suggested method not only successfully identifies sinus irregularities but also automatically executes the necessary segmentation without requiring any manual cropping. This eliminates the need for time-consuming and error-prone human labor. When tested with actual CT scans, the method in question was discovered to have an accuracy of 95.16 percent while retaining a sensitivity of 99.14 percent throughout.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信