{"title":"用于窄带接收机的带 11 位电荷域 DAC 的低功耗、高可重构模拟 FIR 滤波器","authors":"Chien-Wei Tseng;Zhen Feng;Zichen Fan;Hyochan An;Yunfan Wang;Hun-Seok Kim;David Blaauw","doi":"10.1109/LSSC.2024.3361380","DOIUrl":null,"url":null,"abstract":"An innovative, highly reconfigurable charge-domain analog finite-impulse-response (AFIR) filter for high-channel selectivity receivers is presented. This filter demonstrates excellent reconfigurability to different bandwidths and desired stopband rejection and realizes the coefficients in the charge-domain with time-varying pulse widths controlling the on-time of the transconductor. The charge-domain finite impulse response (FIR) principle is derived step by step in this letter. The proposed filter, manufactured in 28-nm CMOS process, occupies a compact area of 0.05 mm 2, and its bandwidth can be reconfigured from 0.37 to 4.6 MHz. The filter can achieve −70-dB stopband rejection with a sharp transition (\n<inline-formula> <tex-math>$-f_{-60 {\\mathrm {dB}}}^{/f}-3~ {\\mathrm {dB}}\\,\\,=$ </tex-math></inline-formula>\n 4.5) and low-power consumption of 0.356 mW.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"74-77"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-Power Highly Reconfigurable Analog FIR Filter With 11-Bit Charge-Domain DAC for Narrowband Receivers\",\"authors\":\"Chien-Wei Tseng;Zhen Feng;Zichen Fan;Hyochan An;Yunfan Wang;Hun-Seok Kim;David Blaauw\",\"doi\":\"10.1109/LSSC.2024.3361380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An innovative, highly reconfigurable charge-domain analog finite-impulse-response (AFIR) filter for high-channel selectivity receivers is presented. This filter demonstrates excellent reconfigurability to different bandwidths and desired stopband rejection and realizes the coefficients in the charge-domain with time-varying pulse widths controlling the on-time of the transconductor. The charge-domain finite impulse response (FIR) principle is derived step by step in this letter. The proposed filter, manufactured in 28-nm CMOS process, occupies a compact area of 0.05 mm 2, and its bandwidth can be reconfigured from 0.37 to 4.6 MHz. The filter can achieve −70-dB stopband rejection with a sharp transition (\\n<inline-formula> <tex-math>$-f_{-60 {\\\\mathrm {dB}}}^{/f}-3~ {\\\\mathrm {dB}}\\\\,\\\\,=$ </tex-math></inline-formula>\\n 4.5) and low-power consumption of 0.356 mW.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"7 \",\"pages\":\"74-77\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10418260/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10418260/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Low-Power Highly Reconfigurable Analog FIR Filter With 11-Bit Charge-Domain DAC for Narrowband Receivers
An innovative, highly reconfigurable charge-domain analog finite-impulse-response (AFIR) filter for high-channel selectivity receivers is presented. This filter demonstrates excellent reconfigurability to different bandwidths and desired stopband rejection and realizes the coefficients in the charge-domain with time-varying pulse widths controlling the on-time of the transconductor. The charge-domain finite impulse response (FIR) principle is derived step by step in this letter. The proposed filter, manufactured in 28-nm CMOS process, occupies a compact area of 0.05 mm 2, and its bandwidth can be reconfigured from 0.37 to 4.6 MHz. The filter can achieve −70-dB stopband rejection with a sharp transition (
$-f_{-60 {\mathrm {dB}}}^{/f}-3~ {\mathrm {dB}}\,\,=$
4.5) and low-power consumption of 0.356 mW.