{"title":"副溶血性乳酸杆菌 CCFM1222 可改善右旋糖酐硫酸钠诱导的小鼠肠道屏障并调节肠道微生物区系","authors":"Weiling Guo, Xin Tang, Qiuxiang Zhang, Feifei Xiong, Yongqiu Yan, Jianxin Zhao, Bingyong Mao, Hao Zhang, Shumao Cui","doi":"10.1007/s12602-024-10236-0","DOIUrl":null,"url":null,"abstract":"<p><p>Lacticaseibacillus paracasei has been regarded as a probiotic bacterium because of its role in anti-inflammatory properties and maintenance of intestinal barrier permeability. Here, we explored the anticolitic effects and mechanism of L. paracasei CCFM1222. The results showed that L. paracasei CCFM1222 supplementation could suppress the disease activity index (DAI) and colon length shortening in colitis mice, accompanied by a moderate increase in colonic tight junction proteins (ZO-1, occludin and claudin-1). L. paracasei CCFM1222 intervention significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and significantly elevated the activities of antioxidant enzymes (including SOD, GSH-Px, and CAT) in the colon by regulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways in colitis mice. In addition, L. paracasei CCFM1222 significantly shifted the gut microbiota, including elevating the abundance of Catabacter, Ruminiclostridium 9, Alistipes, and Faecalibaculum, as well as reducing the abundance of Mucispirillum, Escherichia-Shigella, and Salmonella, which was associated with the improvement of colonic barrier damage. Overall, these results suggest that L. paracasei CCFM1222 is a good candidate for probiotic of improving colonic barrier damage and associated diseases.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1001-1013"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lacticaseibacillus paracasei CCFM1222 Ameliorated the Intestinal Barrier and Regulated Gut Microbiota in Mice with Dextran Sulfate Sodium-Induced Colitis.\",\"authors\":\"Weiling Guo, Xin Tang, Qiuxiang Zhang, Feifei Xiong, Yongqiu Yan, Jianxin Zhao, Bingyong Mao, Hao Zhang, Shumao Cui\",\"doi\":\"10.1007/s12602-024-10236-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lacticaseibacillus paracasei has been regarded as a probiotic bacterium because of its role in anti-inflammatory properties and maintenance of intestinal barrier permeability. Here, we explored the anticolitic effects and mechanism of L. paracasei CCFM1222. The results showed that L. paracasei CCFM1222 supplementation could suppress the disease activity index (DAI) and colon length shortening in colitis mice, accompanied by a moderate increase in colonic tight junction proteins (ZO-1, occludin and claudin-1). L. paracasei CCFM1222 intervention significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and significantly elevated the activities of antioxidant enzymes (including SOD, GSH-Px, and CAT) in the colon by regulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways in colitis mice. In addition, L. paracasei CCFM1222 significantly shifted the gut microbiota, including elevating the abundance of Catabacter, Ruminiclostridium 9, Alistipes, and Faecalibaculum, as well as reducing the abundance of Mucispirillum, Escherichia-Shigella, and Salmonella, which was associated with the improvement of colonic barrier damage. Overall, these results suggest that L. paracasei CCFM1222 is a good candidate for probiotic of improving colonic barrier damage and associated diseases.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"1001-1013\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-024-10236-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10236-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Lacticaseibacillus paracasei CCFM1222 Ameliorated the Intestinal Barrier and Regulated Gut Microbiota in Mice with Dextran Sulfate Sodium-Induced Colitis.
Lacticaseibacillus paracasei has been regarded as a probiotic bacterium because of its role in anti-inflammatory properties and maintenance of intestinal barrier permeability. Here, we explored the anticolitic effects and mechanism of L. paracasei CCFM1222. The results showed that L. paracasei CCFM1222 supplementation could suppress the disease activity index (DAI) and colon length shortening in colitis mice, accompanied by a moderate increase in colonic tight junction proteins (ZO-1, occludin and claudin-1). L. paracasei CCFM1222 intervention significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and significantly elevated the activities of antioxidant enzymes (including SOD, GSH-Px, and CAT) in the colon by regulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways in colitis mice. In addition, L. paracasei CCFM1222 significantly shifted the gut microbiota, including elevating the abundance of Catabacter, Ruminiclostridium 9, Alistipes, and Faecalibaculum, as well as reducing the abundance of Mucispirillum, Escherichia-Shigella, and Salmonella, which was associated with the improvement of colonic barrier damage. Overall, these results suggest that L. paracasei CCFM1222 is a good candidate for probiotic of improving colonic barrier damage and associated diseases.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.