{"title":"随机离散分数库诺二元垄断博弈:建模、稳定性和最优控制","authors":"Jie Ran, Yonghui Zhou","doi":"10.1155/2024/6680399","DOIUrl":null,"url":null,"abstract":"<p>A stochastic discrete fractional Cournot duopoly game model with a unique interior Nash equilibrium is developed in this study. Some sufficient criteria of the Lyapunov stability in probability for the proposed model at the interior Nash equilibrium are derived using the Lyapunov theory. The proposed model’s finite time stability in probability is then investigated using a nonlinear feedback control approach at the interior Nash equilibrium. The stochastic Bellman theory is also used to explore the locally optimum control problem. Furthermore, bifurcation diagrams, time series, and the 0-1 test are used to investigate the chaotic dynamics of this model. Finally, numerical examples are given to illustrate the obtained results.</p>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Stochastic Discrete Fractional Cournot Duopoly Game: Modeling, Stability, and Optimal Control\",\"authors\":\"Jie Ran, Yonghui Zhou\",\"doi\":\"10.1155/2024/6680399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A stochastic discrete fractional Cournot duopoly game model with a unique interior Nash equilibrium is developed in this study. Some sufficient criteria of the Lyapunov stability in probability for the proposed model at the interior Nash equilibrium are derived using the Lyapunov theory. The proposed model’s finite time stability in probability is then investigated using a nonlinear feedback control approach at the interior Nash equilibrium. The stochastic Bellman theory is also used to explore the locally optimum control problem. Furthermore, bifurcation diagrams, time series, and the 0-1 test are used to investigate the chaotic dynamics of this model. Finally, numerical examples are given to illustrate the obtained results.</p>\",\"PeriodicalId\":50653,\"journal\":{\"name\":\"Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complexity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6680399\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6680399","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Stochastic Discrete Fractional Cournot Duopoly Game: Modeling, Stability, and Optimal Control
A stochastic discrete fractional Cournot duopoly game model with a unique interior Nash equilibrium is developed in this study. Some sufficient criteria of the Lyapunov stability in probability for the proposed model at the interior Nash equilibrium are derived using the Lyapunov theory. The proposed model’s finite time stability in probability is then investigated using a nonlinear feedback control approach at the interior Nash equilibrium. The stochastic Bellman theory is also used to explore the locally optimum control problem. Furthermore, bifurcation diagrams, time series, and the 0-1 test are used to investigate the chaotic dynamics of this model. Finally, numerical examples are given to illustrate the obtained results.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.