Junhyuk Woo, Hyeongmo Kim, Soon Ho Kim, Kyungreem Han
{"title":"噪声驱动输入时的回声状态特性","authors":"Junhyuk Woo, Hyeongmo Kim, Soon Ho Kim, Kyungreem Han","doi":"10.1155/2024/5593925","DOIUrl":null,"url":null,"abstract":"<p>The echo state property (ESP) is a key concept for understanding the working principle of the most widely used reservoir computing model, the echo state network (ESN). The ESP is achieved most of the operation time under general conditions, yet the property is lost when a combination of driving input signals and intrinsic reservoir dynamics causes unfavorable conditions for forgetting the initial transient state. A widely used treatment, setting the spectral radius of the weight matrix below the unity, is not sufficient as it may not properly account for the nature of driving inputs. Here, we characterize how noisy driving inputs affect the dynamical properties of an ESN and the empirical evaluation of the ESP. The standard ESN with a hyperbolic tangent activation function is tested using the MNIST handwritten digit datasets at different additive white Gaussian noise levels. The correlations among the neurons, input mapping, and memory capacity of the reservoir nonlinearly decrease with the noise level. These trends agree with the deterioration of the MNIST classification accuracy against noise. In addition, the ESP index for noisy driving input is developed as a tool to help easily assess ESPs in practical applications. Bifurcation analysis explicates how the noise destroys an asymptotical convergence in an ESN and confirms that the proposed index successfully captures the ESP against noise. These results pave the way for developing noise-robust reservoir computing systems, which may promote the validity and utility of reservoir computing for real-world machine learning applications.</p>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Echo State Property upon Noisy Driving Input\",\"authors\":\"Junhyuk Woo, Hyeongmo Kim, Soon Ho Kim, Kyungreem Han\",\"doi\":\"10.1155/2024/5593925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The echo state property (ESP) is a key concept for understanding the working principle of the most widely used reservoir computing model, the echo state network (ESN). The ESP is achieved most of the operation time under general conditions, yet the property is lost when a combination of driving input signals and intrinsic reservoir dynamics causes unfavorable conditions for forgetting the initial transient state. A widely used treatment, setting the spectral radius of the weight matrix below the unity, is not sufficient as it may not properly account for the nature of driving inputs. Here, we characterize how noisy driving inputs affect the dynamical properties of an ESN and the empirical evaluation of the ESP. The standard ESN with a hyperbolic tangent activation function is tested using the MNIST handwritten digit datasets at different additive white Gaussian noise levels. The correlations among the neurons, input mapping, and memory capacity of the reservoir nonlinearly decrease with the noise level. These trends agree with the deterioration of the MNIST classification accuracy against noise. In addition, the ESP index for noisy driving input is developed as a tool to help easily assess ESPs in practical applications. Bifurcation analysis explicates how the noise destroys an asymptotical convergence in an ESN and confirms that the proposed index successfully captures the ESP against noise. These results pave the way for developing noise-robust reservoir computing systems, which may promote the validity and utility of reservoir computing for real-world machine learning applications.</p>\",\"PeriodicalId\":50653,\"journal\":{\"name\":\"Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complexity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5593925\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5593925","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The echo state property (ESP) is a key concept for understanding the working principle of the most widely used reservoir computing model, the echo state network (ESN). The ESP is achieved most of the operation time under general conditions, yet the property is lost when a combination of driving input signals and intrinsic reservoir dynamics causes unfavorable conditions for forgetting the initial transient state. A widely used treatment, setting the spectral radius of the weight matrix below the unity, is not sufficient as it may not properly account for the nature of driving inputs. Here, we characterize how noisy driving inputs affect the dynamical properties of an ESN and the empirical evaluation of the ESP. The standard ESN with a hyperbolic tangent activation function is tested using the MNIST handwritten digit datasets at different additive white Gaussian noise levels. The correlations among the neurons, input mapping, and memory capacity of the reservoir nonlinearly decrease with the noise level. These trends agree with the deterioration of the MNIST classification accuracy against noise. In addition, the ESP index for noisy driving input is developed as a tool to help easily assess ESPs in practical applications. Bifurcation analysis explicates how the noise destroys an asymptotical convergence in an ESN and confirms that the proposed index successfully captures the ESP against noise. These results pave the way for developing noise-robust reservoir computing systems, which may promote the validity and utility of reservoir computing for real-world machine learning applications.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.