Zhengji Zhu, Chunshuang Chu, Kangkai Tian, Zhan Xuan, Zhiwei Xie, Ke Jiang, Yonghui Zhang, Xiaojuan Sun, Zi-Hui Zhang, Dabing Li
{"title":"具有厚氮化镓吸收层的偏振掺杂 n-p-i-p-n 氮化镓基并联光电晶体管,可实现高响应率","authors":"Zhengji Zhu, Chunshuang Chu, Kangkai Tian, Zhan Xuan, Zhiwei Xie, Ke Jiang, Yonghui Zhang, Xiaojuan Sun, Zi-Hui Zhang, Dabing Li","doi":"10.1088/1361-6641/ad2427","DOIUrl":null,"url":null,"abstract":"In this report, we propose a polarization-doped n-p-i-p-n GaN-based parallel phototransistor with thick GaN absorption layer. We employ an Al-composition-graded Al<sub>x</sub>Ga<sub>1–x</sub>N layer for achieving p-type doping feature. We have studied the light propagation in the unintentionally doped GaN (i-GaN) absorption layer with different thicknesses, and the optimized thickness is 2 <italic toggle=\"yes\">μ</italic>m. As a result, the photo current of 10<sup>−2</sup> A cm<sup>−2</sup> and the responsivity of 2.12 A W<sup>−1</sup> can be obtained at the applied bias of 5 V. In our fabricated device, during the current transport process, the photo-generated carriers are not along the device surface. Therefore, the photoconductive effect will be absent, and hence our device achieves a response speed with a rise time of 43.3 ms and a fall time of 86.4 ms.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"8 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization-doped n-p-i-p-n GaN-based parallel phototransistor with thick GaN absorption layer for achieving high responsivity\",\"authors\":\"Zhengji Zhu, Chunshuang Chu, Kangkai Tian, Zhan Xuan, Zhiwei Xie, Ke Jiang, Yonghui Zhang, Xiaojuan Sun, Zi-Hui Zhang, Dabing Li\",\"doi\":\"10.1088/1361-6641/ad2427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this report, we propose a polarization-doped n-p-i-p-n GaN-based parallel phototransistor with thick GaN absorption layer. We employ an Al-composition-graded Al<sub>x</sub>Ga<sub>1–x</sub>N layer for achieving p-type doping feature. We have studied the light propagation in the unintentionally doped GaN (i-GaN) absorption layer with different thicknesses, and the optimized thickness is 2 <italic toggle=\\\"yes\\\">μ</italic>m. As a result, the photo current of 10<sup>−2</sup> A cm<sup>−2</sup> and the responsivity of 2.12 A W<sup>−1</sup> can be obtained at the applied bias of 5 V. In our fabricated device, during the current transport process, the photo-generated carriers are not along the device surface. Therefore, the photoconductive effect will be absent, and hence our device achieves a response speed with a rise time of 43.3 ms and a fall time of 86.4 ms.\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad2427\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad2427","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Polarization-doped n-p-i-p-n GaN-based parallel phototransistor with thick GaN absorption layer for achieving high responsivity
In this report, we propose a polarization-doped n-p-i-p-n GaN-based parallel phototransistor with thick GaN absorption layer. We employ an Al-composition-graded AlxGa1–xN layer for achieving p-type doping feature. We have studied the light propagation in the unintentionally doped GaN (i-GaN) absorption layer with different thicknesses, and the optimized thickness is 2 μm. As a result, the photo current of 10−2 A cm−2 and the responsivity of 2.12 A W−1 can be obtained at the applied bias of 5 V. In our fabricated device, during the current transport process, the photo-generated carriers are not along the device surface. Therefore, the photoconductive effect will be absent, and hence our device achieves a response speed with a rise time of 43.3 ms and a fall time of 86.4 ms.
期刊介绍:
Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic.
The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including:
fundamental properties
materials and nanostructures
devices and applications
fabrication and processing
new analytical techniques
simulation
emerging fields:
materials and devices for quantum technologies
hybrid structures and devices
2D and topological materials
metamaterials
semiconductors for energy
flexible electronics.