{"title":"对循环水产养殖系统进行可靠的死亡率预测。","authors":"Vasco Costa, Eugénio Rocha, Carlos Marques","doi":"10.1063/5.0196248","DOIUrl":null,"url":null,"abstract":"<p><p>Aquaculture presents itself as one of the most rapidly developing means of sustainable production of animal protein to feed ever-growing populations. Recirculating aquaculture systems offer higher control and fewer inconveniences than traditional systems, making them an attractive option for fish production. Although the sector's digitalization is in its early stages, its application should increase its rentability while conserving the environment. This paper aims to promote the sector's evolution by assessing parameter importance in mortality with tree-based machine learning models, verifying the method's natural robustness and how it compares to a specially devised one, and at the same time evaluating the concept's relevance in predicting categorical mortality values. In particular, to better understand the aquaculture production process through a systematic data evaluation, an exploration based on real-time data acquisition is fully needed. Moreover, algorithm robustness is a key ingredient in this application since measurements are greatly affected by errors. This invalidates the application of traditional machine learning methods, where models are sensitive to production data variations and sensor noise. The study found the parameters that play relevant roles in the production phases, such as pH and nitrate concentration. While the obtained predictive metrics are still sub-optimal, further enhancements could be achieved through rigorous analysis of feature engineering, fine-tuning model hyperparameters, and exploring more advanced algorithms. Additionally, incorporating larger and more diverse datasets, refining data pre-processing techniques, and iteratively optimizing the model architecture may contribute to significant improvements in predictive performance. Despite that, the impact costs of using adjusted machine learning metrics are clear, as are the importance of data rounding in pre-processing and directions for improvement regarding data acquisition and transformation.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust mortality prediction on a recirculating aquaculture system.\",\"authors\":\"Vasco Costa, Eugénio Rocha, Carlos Marques\",\"doi\":\"10.1063/5.0196248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aquaculture presents itself as one of the most rapidly developing means of sustainable production of animal protein to feed ever-growing populations. Recirculating aquaculture systems offer higher control and fewer inconveniences than traditional systems, making them an attractive option for fish production. Although the sector's digitalization is in its early stages, its application should increase its rentability while conserving the environment. This paper aims to promote the sector's evolution by assessing parameter importance in mortality with tree-based machine learning models, verifying the method's natural robustness and how it compares to a specially devised one, and at the same time evaluating the concept's relevance in predicting categorical mortality values. In particular, to better understand the aquaculture production process through a systematic data evaluation, an exploration based on real-time data acquisition is fully needed. Moreover, algorithm robustness is a key ingredient in this application since measurements are greatly affected by errors. This invalidates the application of traditional machine learning methods, where models are sensitive to production data variations and sensor noise. The study found the parameters that play relevant roles in the production phases, such as pH and nitrate concentration. While the obtained predictive metrics are still sub-optimal, further enhancements could be achieved through rigorous analysis of feature engineering, fine-tuning model hyperparameters, and exploring more advanced algorithms. Additionally, incorporating larger and more diverse datasets, refining data pre-processing techniques, and iteratively optimizing the model architecture may contribute to significant improvements in predictive performance. Despite that, the impact costs of using adjusted machine learning metrics are clear, as are the importance of data rounding in pre-processing and directions for improvement regarding data acquisition and transformation.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"95 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0196248\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0196248","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Robust mortality prediction on a recirculating aquaculture system.
Aquaculture presents itself as one of the most rapidly developing means of sustainable production of animal protein to feed ever-growing populations. Recirculating aquaculture systems offer higher control and fewer inconveniences than traditional systems, making them an attractive option for fish production. Although the sector's digitalization is in its early stages, its application should increase its rentability while conserving the environment. This paper aims to promote the sector's evolution by assessing parameter importance in mortality with tree-based machine learning models, verifying the method's natural robustness and how it compares to a specially devised one, and at the same time evaluating the concept's relevance in predicting categorical mortality values. In particular, to better understand the aquaculture production process through a systematic data evaluation, an exploration based on real-time data acquisition is fully needed. Moreover, algorithm robustness is a key ingredient in this application since measurements are greatly affected by errors. This invalidates the application of traditional machine learning methods, where models are sensitive to production data variations and sensor noise. The study found the parameters that play relevant roles in the production phases, such as pH and nitrate concentration. While the obtained predictive metrics are still sub-optimal, further enhancements could be achieved through rigorous analysis of feature engineering, fine-tuning model hyperparameters, and exploring more advanced algorithms. Additionally, incorporating larger and more diverse datasets, refining data pre-processing techniques, and iteratively optimizing the model architecture may contribute to significant improvements in predictive performance. Despite that, the impact costs of using adjusted machine learning metrics are clear, as are the importance of data rounding in pre-processing and directions for improvement regarding data acquisition and transformation.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.