半导体制造中双向功能数据的平均预测模型

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Soobin Kim;Youngwook Kwon;Joonpyo Kim;Kiwook Bae;Hee-Seok Oh
{"title":"半导体制造中双向功能数据的平均预测模型","authors":"Soobin Kim;Youngwook Kwon;Joonpyo Kim;Kiwook Bae;Hee-Seok Oh","doi":"10.1109/TSM.2023.3339731","DOIUrl":null,"url":null,"abstract":"This paper proposes a linear regression model for scalar-valued responses and two-way functional (bivariate) predictors. Our motivation stems from the quality evaluation of products based on optical emission spectroscopy data from virtual metrology of semiconductor manufacturing. We focus on multivariate cases where the smoothness and shapes of the data vary significantly across variables. We propose a two-step solution to this problem, consisting of decomposition and prediction. First, we decompose the two-way functional data into pairs of component functions using functional singular value decomposition. Next, we build functional linear models for the decomposed functional variables and obtain the final predictor by averaging the models. Results from numerical studies, including simulation studies and real data analysis, demonstrate the promising empirical properties of the proposed approach, especially when the number of predictors is large.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"76-86"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model Averaging Prediction of Two-Way Functional Data in Semiconductor Manufacturing\",\"authors\":\"Soobin Kim;Youngwook Kwon;Joonpyo Kim;Kiwook Bae;Hee-Seok Oh\",\"doi\":\"10.1109/TSM.2023.3339731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a linear regression model for scalar-valued responses and two-way functional (bivariate) predictors. Our motivation stems from the quality evaluation of products based on optical emission spectroscopy data from virtual metrology of semiconductor manufacturing. We focus on multivariate cases where the smoothness and shapes of the data vary significantly across variables. We propose a two-step solution to this problem, consisting of decomposition and prediction. First, we decompose the two-way functional data into pairs of component functions using functional singular value decomposition. Next, we build functional linear models for the decomposed functional variables and obtain the final predictor by averaging the models. Results from numerical studies, including simulation studies and real data analysis, demonstrate the promising empirical properties of the proposed approach, especially when the number of predictors is large.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"37 1\",\"pages\":\"76-86\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10345747/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10345747/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文针对标量值响应和双向函数(双变量)预测因子提出了一种线性回归模型。我们的动机源于基于半导体制造虚拟计量学中光学发射光谱数据的产品质量评估。我们的重点是数据的平滑度和形状在不同变量之间存在显著差异的多变量情况。针对这一问题,我们提出了由分解和预测两步组成的解决方案。首先,我们使用函数奇异值分解法将双向函数数据分解为成对的分量函数。然后,我们为分解后的函数变量建立函数线性模型,并通过平均这些模型得到最终预测结果。包括模拟研究和实际数据分析在内的数值研究结果表明,所提出的方法具有良好的经验特性,尤其是在预测因子数量较多时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model Averaging Prediction of Two-Way Functional Data in Semiconductor Manufacturing
This paper proposes a linear regression model for scalar-valued responses and two-way functional (bivariate) predictors. Our motivation stems from the quality evaluation of products based on optical emission spectroscopy data from virtual metrology of semiconductor manufacturing. We focus on multivariate cases where the smoothness and shapes of the data vary significantly across variables. We propose a two-step solution to this problem, consisting of decomposition and prediction. First, we decompose the two-way functional data into pairs of component functions using functional singular value decomposition. Next, we build functional linear models for the decomposed functional variables and obtain the final predictor by averaging the models. Results from numerical studies, including simulation studies and real data analysis, demonstrate the promising empirical properties of the proposed approach, especially when the number of predictors is large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信