D. Zagouri;A. Rimer;E. Emanovic;Y. Ninio;Y. Slezak;D. Jurisic;A. Fish;J. Shor
{"title":"具有事件检测能力的 180 纳米光伏能量收集器/图像传感器平台","authors":"D. Zagouri;A. Rimer;E. Emanovic;Y. Ninio;Y. Slezak;D. Jurisic;A. Fish;J. Shor","doi":"10.1109/LSSC.2024.3353381","DOIUrl":null,"url":null,"abstract":"Photodiodes can be utilized for both image sensing and energy harvesting, but at opposite polarity. There have been numerous research works which have attempted a self-powered imager, by flipping the diodes and harvesting. However, the integration cycle in the image sensing(IS) process is very long and the chip cannot harvest while in this mode. In this letter, an event detector (ED) function is demonstrated in 180 nm, whereby the voltage across the photodiode is monitored during harvesting. If there is a significant change in this voltage, then an event is detected, and the chip can take a picture. Two types of EDs are proposed, which can function at average power as low as 0.2–\n<inline-formula> <tex-math>$1 ~\\mu \\text{W}$ </tex-math></inline-formula>\n.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"62-65"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Photovoltaic Energy Harvester/Image Sensor Platform With Event Detection Capability in 180 nm\",\"authors\":\"D. Zagouri;A. Rimer;E. Emanovic;Y. Ninio;Y. Slezak;D. Jurisic;A. Fish;J. Shor\",\"doi\":\"10.1109/LSSC.2024.3353381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photodiodes can be utilized for both image sensing and energy harvesting, but at opposite polarity. There have been numerous research works which have attempted a self-powered imager, by flipping the diodes and harvesting. However, the integration cycle in the image sensing(IS) process is very long and the chip cannot harvest while in this mode. In this letter, an event detector (ED) function is demonstrated in 180 nm, whereby the voltage across the photodiode is monitored during harvesting. If there is a significant change in this voltage, then an event is detected, and the chip can take a picture. Two types of EDs are proposed, which can function at average power as low as 0.2–\\n<inline-formula> <tex-math>$1 ~\\\\mu \\\\text{W}$ </tex-math></inline-formula>\\n.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"7 \",\"pages\":\"62-65\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10398473/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10398473/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Photovoltaic Energy Harvester/Image Sensor Platform With Event Detection Capability in 180 nm
Photodiodes can be utilized for both image sensing and energy harvesting, but at opposite polarity. There have been numerous research works which have attempted a self-powered imager, by flipping the diodes and harvesting. However, the integration cycle in the image sensing(IS) process is very long and the chip cannot harvest while in this mode. In this letter, an event detector (ED) function is demonstrated in 180 nm, whereby the voltage across the photodiode is monitored during harvesting. If there is a significant change in this voltage, then an event is detected, and the chip can take a picture. Two types of EDs are proposed, which can function at average power as low as 0.2–
$1 ~\mu \text{W}$
.