{"title":"量化非自杀性自伤特征在预测不同临床结果中的重要性:使用随机森林模型","authors":"Zhenhai Wang, Yanrong Chen, Zhiyuan Tao, Maomei Yang, Dongjie Li, Liyun Jiang, Wei Zhang","doi":"10.1007/s10964-023-01926-z","DOIUrl":null,"url":null,"abstract":"<p><p>Existing research on non-suicidal self-injury (NSSI) among adolescents has primarily concentrated on general risk factors, leaving a significant gap in understanding the specific NSSI characteristics that predict diverse psychopathological outcomes. This study aims to address this gap by using Random Forests to discern the significant predictors of different clinical outcomes. The study tracked 348 adolescents (64.7% girls; mean age = 13.31, SD = 0.91) over 6 months. Initially, 46 characteristics of NSSI were evaluated for their potential to predict the repetition of NSSI, as well as depression, anxiety, and suicidal risks at a follow-up (T2). The findings revealed distinct predictors for each psychopathology. Specifically, psychological pain was identified as a significant predictor for depression, anxiety, and suicidal risks, while the perceived effectiveness of NSSI was crucial in forecasting its repetition. These findings imply that it is feasible to identify high-risk individuals by assessing key NSSI characteristics, and also highlight the importance of considering diverse NSSI characteristics when working with self-injurers.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Importance of Non-Suicidal Self-Injury Characteristics in Predicting Different Clinical Outcomes: Using Random Forest Model.\",\"authors\":\"Zhenhai Wang, Yanrong Chen, Zhiyuan Tao, Maomei Yang, Dongjie Li, Liyun Jiang, Wei Zhang\",\"doi\":\"10.1007/s10964-023-01926-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Existing research on non-suicidal self-injury (NSSI) among adolescents has primarily concentrated on general risk factors, leaving a significant gap in understanding the specific NSSI characteristics that predict diverse psychopathological outcomes. This study aims to address this gap by using Random Forests to discern the significant predictors of different clinical outcomes. The study tracked 348 adolescents (64.7% girls; mean age = 13.31, SD = 0.91) over 6 months. Initially, 46 characteristics of NSSI were evaluated for their potential to predict the repetition of NSSI, as well as depression, anxiety, and suicidal risks at a follow-up (T2). The findings revealed distinct predictors for each psychopathology. Specifically, psychological pain was identified as a significant predictor for depression, anxiety, and suicidal risks, while the perceived effectiveness of NSSI was crucial in forecasting its repetition. These findings imply that it is feasible to identify high-risk individuals by assessing key NSSI characteristics, and also highlight the importance of considering diverse NSSI characteristics when working with self-injurers.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s10964-023-01926-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s10964-023-01926-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Quantifying the Importance of Non-Suicidal Self-Injury Characteristics in Predicting Different Clinical Outcomes: Using Random Forest Model.
Existing research on non-suicidal self-injury (NSSI) among adolescents has primarily concentrated on general risk factors, leaving a significant gap in understanding the specific NSSI characteristics that predict diverse psychopathological outcomes. This study aims to address this gap by using Random Forests to discern the significant predictors of different clinical outcomes. The study tracked 348 adolescents (64.7% girls; mean age = 13.31, SD = 0.91) over 6 months. Initially, 46 characteristics of NSSI were evaluated for their potential to predict the repetition of NSSI, as well as depression, anxiety, and suicidal risks at a follow-up (T2). The findings revealed distinct predictors for each psychopathology. Specifically, psychological pain was identified as a significant predictor for depression, anxiety, and suicidal risks, while the perceived effectiveness of NSSI was crucial in forecasting its repetition. These findings imply that it is feasible to identify high-risk individuals by assessing key NSSI characteristics, and also highlight the importance of considering diverse NSSI characteristics when working with self-injurers.