Xin Zhang, Ping Yang, Ji Tian, Fan Wen, Xi Chen, Tayyab Muhammad
{"title":"基于局部-全局混合网络的良性和恶性肺结节分类","authors":"Xin Zhang, Ping Yang, Ji Tian, Fan Wen, Xi Chen, Tayyab Muhammad","doi":"10.3233/XST-230291","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The accurate classification of pulmonary nodules has great application value in assisting doctors in diagnosing conditions and meeting clinical needs. However, the complexity and heterogeneity of pulmonary nodules make it difficult to extract valuable characteristics of pulmonary nodules, so it is still challenging to achieve high-accuracy classification of pulmonary nodules.</p><p><strong>Objective: </strong>In this paper, we propose a local-global hybrid network (LGHNet) to jointly model local and global information to improve the classification ability of benign and malignant pulmonary nodules.</p><p><strong>Methods: </strong>First, we introduce the multi-scale local (MSL) block, which splits the input tensor into multiple channel groups, utilizing dilated convolutions with different dilation rates and efficient channel attention to extract fine-grained local information at different scales. Secondly, we design the hybrid attention (HA) block to capture long-range dependencies in spatial and channel dimensions to enhance the representation of global features.</p><p><strong>Results: </strong>Experiments are carried out on the publicly available LIDC-IDRI and LUNGx datasets, and the accuracy, sensitivity, precision, specificity, and area under the curve (AUC) of the LIDC-IDRI dataset are 94.42%, 94.25%, 93.05%, 92.87%, and 97.26%, respectively. The AUC on the LUNGx dataset was 79.26%.</p><p><strong>Conclusion: </strong>The above classification results are superior to the state-of-the-art methods, indicating that the network has better classification performance and generalization ability.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"689-706"},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of benign and malignant pulmonary nodule based on local-global hybrid network.\",\"authors\":\"Xin Zhang, Ping Yang, Ji Tian, Fan Wen, Xi Chen, Tayyab Muhammad\",\"doi\":\"10.3233/XST-230291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The accurate classification of pulmonary nodules has great application value in assisting doctors in diagnosing conditions and meeting clinical needs. However, the complexity and heterogeneity of pulmonary nodules make it difficult to extract valuable characteristics of pulmonary nodules, so it is still challenging to achieve high-accuracy classification of pulmonary nodules.</p><p><strong>Objective: </strong>In this paper, we propose a local-global hybrid network (LGHNet) to jointly model local and global information to improve the classification ability of benign and malignant pulmonary nodules.</p><p><strong>Methods: </strong>First, we introduce the multi-scale local (MSL) block, which splits the input tensor into multiple channel groups, utilizing dilated convolutions with different dilation rates and efficient channel attention to extract fine-grained local information at different scales. Secondly, we design the hybrid attention (HA) block to capture long-range dependencies in spatial and channel dimensions to enhance the representation of global features.</p><p><strong>Results: </strong>Experiments are carried out on the publicly available LIDC-IDRI and LUNGx datasets, and the accuracy, sensitivity, precision, specificity, and area under the curve (AUC) of the LIDC-IDRI dataset are 94.42%, 94.25%, 93.05%, 92.87%, and 97.26%, respectively. The AUC on the LUNGx dataset was 79.26%.</p><p><strong>Conclusion: </strong>The above classification results are superior to the state-of-the-art methods, indicating that the network has better classification performance and generalization ability.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"689-706\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/XST-230291\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230291","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Classification of benign and malignant pulmonary nodule based on local-global hybrid network.
Background: The accurate classification of pulmonary nodules has great application value in assisting doctors in diagnosing conditions and meeting clinical needs. However, the complexity and heterogeneity of pulmonary nodules make it difficult to extract valuable characteristics of pulmonary nodules, so it is still challenging to achieve high-accuracy classification of pulmonary nodules.
Objective: In this paper, we propose a local-global hybrid network (LGHNet) to jointly model local and global information to improve the classification ability of benign and malignant pulmonary nodules.
Methods: First, we introduce the multi-scale local (MSL) block, which splits the input tensor into multiple channel groups, utilizing dilated convolutions with different dilation rates and efficient channel attention to extract fine-grained local information at different scales. Secondly, we design the hybrid attention (HA) block to capture long-range dependencies in spatial and channel dimensions to enhance the representation of global features.
Results: Experiments are carried out on the publicly available LIDC-IDRI and LUNGx datasets, and the accuracy, sensitivity, precision, specificity, and area under the curve (AUC) of the LIDC-IDRI dataset are 94.42%, 94.25%, 93.05%, 92.87%, and 97.26%, respectively. The AUC on the LUNGx dataset was 79.26%.
Conclusion: The above classification results are superior to the state-of-the-art methods, indicating that the network has better classification performance and generalization ability.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.