Kexin Chen, Xuan Liu, Bo Ouyang, Dongming Lan, Yonghua Wang
{"title":"在无溶剂体系中使用高耐热性固定化脂肪酶有效生产 β-谷甾醇油酸酯","authors":"Kexin Chen, Xuan Liu, Bo Ouyang, Dongming Lan, Yonghua Wang","doi":"10.1002/aocs.12813","DOIUrl":null,"url":null,"abstract":"<p>β-Sitosteryl oleate, renowned for its diverse beneficial bioactivities, holds significant promise as a potential ingredient in functional foods. This study reports the superior performance of β-sitosteryl oleate facilitated by lipase UM1 (lipase from marine <i>Streptomyces</i> sp. W007, immobilized on XAD1180 resin) as a biocatalyst in a solvent-free system, in comparison to commercial enzymes Novozym 435 (lipase B from <i>Candida antarctica</i>, immobilized on a macroporous acrylic resin), Lipozyme TL IM (lipase from <i>Thermomyces lanuginosus</i>, immobilized on a non-compressible silica gel carrier), and Lipozyme RM IM (lipase from <i>Rhizomucor miehei</i>, immobilized on a macroporous acrylic resin). Remarkably, an over 98% yield was achieved under the optimal conditions: a substrate molar ratio of β-sitosterol to oleic acid of 1:4, lipase loading of 150 U, and a reaction temperature of 60°C. The process exhibited substantial resilience and effectiveness, maintaining a degree of esterification above 95% even after five recycles. Following this, the synthesis was successfully scaled up by 100-fold, with the product isolated through molecular distillation and confirmed using ultra-performance liquid chromatography mass spectrometry (UPLC-MS) and Fourier transform infrared spectroscopy (FT-IR) analytical techniques. These results underscore lipase UM1 as a promising catalyst for the industrial-scale synthesis of β-sitosteryl oleate, fostering expanded avenues for its utilization in the functional food industry.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective production of β-sitosteryl oleate using a highly thermal-tolerant immobilized lipase in a solvent-free system\",\"authors\":\"Kexin Chen, Xuan Liu, Bo Ouyang, Dongming Lan, Yonghua Wang\",\"doi\":\"10.1002/aocs.12813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>β-Sitosteryl oleate, renowned for its diverse beneficial bioactivities, holds significant promise as a potential ingredient in functional foods. This study reports the superior performance of β-sitosteryl oleate facilitated by lipase UM1 (lipase from marine <i>Streptomyces</i> sp. W007, immobilized on XAD1180 resin) as a biocatalyst in a solvent-free system, in comparison to commercial enzymes Novozym 435 (lipase B from <i>Candida antarctica</i>, immobilized on a macroporous acrylic resin), Lipozyme TL IM (lipase from <i>Thermomyces lanuginosus</i>, immobilized on a non-compressible silica gel carrier), and Lipozyme RM IM (lipase from <i>Rhizomucor miehei</i>, immobilized on a macroporous acrylic resin). Remarkably, an over 98% yield was achieved under the optimal conditions: a substrate molar ratio of β-sitosterol to oleic acid of 1:4, lipase loading of 150 U, and a reaction temperature of 60°C. The process exhibited substantial resilience and effectiveness, maintaining a degree of esterification above 95% even after five recycles. Following this, the synthesis was successfully scaled up by 100-fold, with the product isolated through molecular distillation and confirmed using ultra-performance liquid chromatography mass spectrometry (UPLC-MS) and Fourier transform infrared spectroscopy (FT-IR) analytical techniques. These results underscore lipase UM1 as a promising catalyst for the industrial-scale synthesis of β-sitosteryl oleate, fostering expanded avenues for its utilization in the functional food industry.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12813\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12813","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Effective production of β-sitosteryl oleate using a highly thermal-tolerant immobilized lipase in a solvent-free system
β-Sitosteryl oleate, renowned for its diverse beneficial bioactivities, holds significant promise as a potential ingredient in functional foods. This study reports the superior performance of β-sitosteryl oleate facilitated by lipase UM1 (lipase from marine Streptomyces sp. W007, immobilized on XAD1180 resin) as a biocatalyst in a solvent-free system, in comparison to commercial enzymes Novozym 435 (lipase B from Candida antarctica, immobilized on a macroporous acrylic resin), Lipozyme TL IM (lipase from Thermomyces lanuginosus, immobilized on a non-compressible silica gel carrier), and Lipozyme RM IM (lipase from Rhizomucor miehei, immobilized on a macroporous acrylic resin). Remarkably, an over 98% yield was achieved under the optimal conditions: a substrate molar ratio of β-sitosterol to oleic acid of 1:4, lipase loading of 150 U, and a reaction temperature of 60°C. The process exhibited substantial resilience and effectiveness, maintaining a degree of esterification above 95% even after five recycles. Following this, the synthesis was successfully scaled up by 100-fold, with the product isolated through molecular distillation and confirmed using ultra-performance liquid chromatography mass spectrometry (UPLC-MS) and Fourier transform infrared spectroscopy (FT-IR) analytical techniques. These results underscore lipase UM1 as a promising catalyst for the industrial-scale synthesis of β-sitosteryl oleate, fostering expanded avenues for its utilization in the functional food industry.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.