基于 LSTM 的手术器械姿态估计与跟踪

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Siyu Lu , Jun Yang , Bo Yang , Xiaolu Li , Zhengtong Yin , Lirong Yin , Wenfeng Zheng
{"title":"基于 LSTM 的手术器械姿态估计与跟踪","authors":"Siyu Lu ,&nbsp;Jun Yang ,&nbsp;Bo Yang ,&nbsp;Xiaolu Li ,&nbsp;Zhengtong Yin ,&nbsp;Lirong Yin ,&nbsp;Wenfeng Zheng","doi":"10.1016/j.icte.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>The surgical navigation system enhances surgical safety and accuracy by providing precise guidance. However, traditional pose estimation algorithms lack real-time performance and accuracy. To address this issue, a multi-average Long Short Term Memory (LSTM) prediction network is designed to maintain sensitivity in estimating the position of surgical instruments and track their random motion trends. Additionally, the spatial coordinates of positioning markers are applied back to the imaging plane, reducing the recognition range and improving algorithm running speed. Experimental results show that the average time of estimation is less than 1ms while ensuring the prediction effect.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 3","pages":"Pages 465-471"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S240595952400002X/pdfft?md5=756714a846ef1b135648aacc1cfe6d16&pid=1-s2.0-S240595952400002X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Surgical instrument posture estimation and tracking based on LSTM\",\"authors\":\"Siyu Lu ,&nbsp;Jun Yang ,&nbsp;Bo Yang ,&nbsp;Xiaolu Li ,&nbsp;Zhengtong Yin ,&nbsp;Lirong Yin ,&nbsp;Wenfeng Zheng\",\"doi\":\"10.1016/j.icte.2024.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The surgical navigation system enhances surgical safety and accuracy by providing precise guidance. However, traditional pose estimation algorithms lack real-time performance and accuracy. To address this issue, a multi-average Long Short Term Memory (LSTM) prediction network is designed to maintain sensitivity in estimating the position of surgical instruments and track their random motion trends. Additionally, the spatial coordinates of positioning markers are applied back to the imaging plane, reducing the recognition range and improving algorithm running speed. Experimental results show that the average time of estimation is less than 1ms while ensuring the prediction effect.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 3\",\"pages\":\"Pages 465-471\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S240595952400002X/pdfft?md5=756714a846ef1b135648aacc1cfe6d16&pid=1-s2.0-S240595952400002X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240595952400002X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240595952400002X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

手术导航系统通过提供精确制导来提高手术的安全性和准确性。然而,传统的姿势估计算法缺乏实时性能和准确性。为解决这一问题,设计了一个多平均长短期记忆(LSTM)预测网络,以保持估计手术器械位置的灵敏度,并跟踪其随机运动趋势。此外,定位标记的空间坐标被应用回成像平面,从而缩小了识别范围并提高了算法运行速度。实验结果表明,在保证预测效果的前提下,估计的平均时间小于 1 毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surgical instrument posture estimation and tracking based on LSTM

The surgical navigation system enhances surgical safety and accuracy by providing precise guidance. However, traditional pose estimation algorithms lack real-time performance and accuracy. To address this issue, a multi-average Long Short Term Memory (LSTM) prediction network is designed to maintain sensitivity in estimating the position of surgical instruments and track their random motion trends. Additionally, the spatial coordinates of positioning markers are applied back to the imaging plane, reducing the recognition range and improving algorithm running speed. Experimental results show that the average time of estimation is less than 1ms while ensuring the prediction effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信