CINE: 采用重叠条纹推理和结构解析内核的 4K-UHD 高能效计算成像神经引擎

IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Kai-Ping Lin;Yu-Chun Ding;Chun-Yeh Lin;Yong-Tai Chen;Chao-Tsung Huang
{"title":"CINE: 采用重叠条纹推理和结构解析内核的 4K-UHD 高能效计算成像神经引擎","authors":"Kai-Ping Lin;Yu-Chun Ding;Chun-Yeh Lin;Yong-Tai Chen;Chao-Tsung Huang","doi":"10.1109/LSSC.2023.3343913","DOIUrl":null,"url":null,"abstract":"Recently, convolutional neural networks have achieved great success in high-resolution computational imaging (CI) applications, such as super-resolution, image denoising, and image style transfer. However, it demands an enormous number of external memory access, i.e., DRAM bandwidth, and intensive computation while inferencing deeper models for high-quality images. In this letter, an energy-efficient CI neural engine, CINE, is proposed with three key features: 1) overlapped stripe inference flow; 2) structure-sparse convolution kernel; and 3) weight-rotated allocation unit. As a result, CINE can provide 4.6-8.3 TOP/W of energy efficiency for high-quality CI applications.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"26-29"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CINE: A 4K-UHD Energy-Efficient Computational Imaging Neural Engine With Overlapped Stripe Inference and Structure-Sparse Kernel\",\"authors\":\"Kai-Ping Lin;Yu-Chun Ding;Chun-Yeh Lin;Yong-Tai Chen;Chao-Tsung Huang\",\"doi\":\"10.1109/LSSC.2023.3343913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, convolutional neural networks have achieved great success in high-resolution computational imaging (CI) applications, such as super-resolution, image denoising, and image style transfer. However, it demands an enormous number of external memory access, i.e., DRAM bandwidth, and intensive computation while inferencing deeper models for high-quality images. In this letter, an energy-efficient CI neural engine, CINE, is proposed with three key features: 1) overlapped stripe inference flow; 2) structure-sparse convolution kernel; and 3) weight-rotated allocation unit. As a result, CINE can provide 4.6-8.3 TOP/W of energy efficiency for high-quality CI applications.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"7 \",\"pages\":\"26-29\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10363439/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10363439/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

最近,卷积神经网络在超分辨率、图像去噪和图像风格转换等高分辨率计算成像(CI)应用中取得了巨大成功。然而,它需要大量的外部内存访问(即 DRAM 带宽)和密集的计算,同时还要推断出高质量图像的深度模型。在这封信中,我们提出了一种高能效的 CI 神经引擎 CINE,它有三个主要特点:1) 重叠条纹推理流;2) 结构稀疏卷积核;3) 权重旋转分配单元。因此,CINE 可为高质量 CI 应用提供 4.6-8.3 TOP/W 的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CINE: A 4K-UHD Energy-Efficient Computational Imaging Neural Engine With Overlapped Stripe Inference and Structure-Sparse Kernel
Recently, convolutional neural networks have achieved great success in high-resolution computational imaging (CI) applications, such as super-resolution, image denoising, and image style transfer. However, it demands an enormous number of external memory access, i.e., DRAM bandwidth, and intensive computation while inferencing deeper models for high-quality images. In this letter, an energy-efficient CI neural engine, CINE, is proposed with three key features: 1) overlapped stripe inference flow; 2) structure-sparse convolution kernel; and 3) weight-rotated allocation unit. As a result, CINE can provide 4.6-8.3 TOP/W of energy efficiency for high-quality CI applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信